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Abstract 
In order to project effects of future climate change on the vadose zone, performance of HYDRUS ver 4.09 

model, which had been mostly applied to dry regions (e.g. Saito et al. 2006), was tested for a monsoonal 

climate. We conducted analysis of simultaneous liquid water, vapor and heat transport across the border 

between atmosphere and vadose zone, and prediction of annual change in soil moisture and temperature of 

arable land in Tokyo. Besides, we monitored soil temperature and soil moisture and made a dataset for model 

validation. In the simulation, soil hydraulic and thermal parameters were obtained by laboratory experiments. 

Meteorological data being open to the public had been used for input data for boundary condition. The 

simulation in general represented the monitored data well. The HYDRUS model could be considered 

appropriate proper and reasonable for the future use in the monsoonal climate region.  

 

Key Words 
Simultaneous heat and water transport, vadose zone, numerical simulation, climate change 

 

Introduction 
Prediction of effects of climate change on the vadose zone is a new application of numerical analysis of 

simultaneous heat and water movement between atmosphere and vadose zone. As well it is important since 

vadose zone is a foundation of ecosystem and agriculture. Changes in elements of climate such as air 

temperature, rainfall, and concentration of CO2 would influence soil physical conditions such as moisture and 

temperature. Effects of climate change on soil have been discussed for many aspects. Nadden and Watts (2000) 

predicted the amount and distribution of available water resources in the United Kingdom with a fusion of 

Global Climate Model (GCM) and Land Surface Model (LSM) by focusing on the phenomena of soil surface 

and atmosphere. On the other hand, Huang (2006) showed soil temperature and downward heat flux in deep 

bore-holes all over the world has been rising for about 100 years. However, physical processes of water and heat 

transport in the vadose zone, and the boundary between atmosphere and soil related to climate change has not 

been discussed.  

 

Though some models have already been proposed for simulating water and heat transport in the vadose zone, 

the models are not ready to simulate changes in heat and water conditions in response to future climate change 

such as temperature rise and variation of precipitation characteristics. One of the problems is a lack of 

comprehensive soil parameters and datasets corresponding to variety of climate and land use types for input and 

validation. For example, HYDRUS 1-D is a software system for simulating 1-dimensional heat, water and 

solute transport in unsaturated, partially and fully saturated porous media (Simunek et al. 2008). Its ver. 4.09 

can consider surface energy balance as a boundary condition for bare soils (Saito et al. 2006). However, the 

model performance was mainly tested for dry regions and validation of energy balance was insufficient The 

purpose of this study is to test HYDRUS model performance for arable land in a monsoonal climate in order to 

predict impacts of future climate change on soil moisture and soil temperature in the vadose zone.  

 

Methods 
Field Monitoring 

The field monitoring and soil sampling has been done at the Field Production Science Center in Graduate 

School of Agricultural and Life Sciences of the University of Tokyo (hereafter called Tanashi Farm) in Tanashi, 

Nishi-Tokyo City, western suburb of Tokyo (N 35°44′13″, E 139°32′30″). Monitoring period was from 

September 2008 to August 2009. The soil of 0 to 40cm under the surface was Kuroboku andisol, and below it to 

100cm, Tachikawa loam andisol was distributed. A 10 m square area was prepared as the experimental site and 

kept bare through the experiment. There, albedo was observed using pyranometer (ML-020VL, EKO), and data 

of solar radiation, precipitation, air temperature, wind speed and relative humidity was obtained from weather 

station of Tanashi farm and AMeDAS (Automated Meteorological Data Acquisition System), belonging to 

Japan Meteorological Agency, near to the farm. 
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Near the surface, heat flux plate (CHF-HFP01, Hukseflux Thermal Sensors) was laid for measuring soil surface 

heat flux. For monitoring soil moisture and soil temperature, TDR sensors (self-made) and copper-constantan 

thermocouples were inserted at depths of 3, 5, 7, 10, 20, 30, 50, 80cm. All sensors were connected to CR10X 

data logger (Campbell Sci.) and data was collected every 20 minutes for a year.  

 

Determination of Soil Physical Properties 

Water retention curves of the soils were measured in the laboratory by hanging water column method and 

pressure plate method. Then inverse analysis with evaporation method (Simunek et al. 1998) was applied to 

determine the soil hydraulic parameters for Durner Model (1984) [1].  
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where Ks is saturated hydraulic conductivity [m/s], Se is effective saturation [-], and l, m=(1-1/n) and n 

are empirical parameters [-].Using the observed data of evaporation experiment, θr, θs, α, n, Ks, l ,w2 , α2 and 

n2 in Durner model were estimated by inverse analysis by using HYDRUS 1-D.  
Soil thermal conductivity λ at several different soil moisture contents was measured using KD2 heat probe 

(Decagon Devices) for both Kuroboku and Tachikawa loam. Then Chung and Horton (1987) model, eq. [2], 

was fitted to determine soil thermal parameters. Volumetric heat capacity of each sample was determined by 

weighed average corresponding to volumetric fraction of solid, air and water with eq. [3] 
5.0

321)( θθθλ bbb ++=  [2] 

awwoonnp CCCCC +++= θθθθ )( won θθθ 18.451.292.1 ++≈  [3] 

where C is volumetric heat capacity, θ is volumetric fraction, n, o, w, and a show solid phase, organic matter, 

liquid water and air phase respectively.  

 

Simulation of Water and Heat Transport in the Field 

After determination of parameters, simulation of water and heat transport in vadose zone in the field from 

DOY1 (1
st
 January, 2008) to DOY609 (31

st
 August, 2009) was conducted by using HYDRUS. Depth of 

calculation profile was fixed as 100 cm, consisted of two layers according to field observation.  

Boundary conditions for water and heat movement and input data needed for estimation are shown in Table 1. 

Because the exact initial soil moisture and thermal conditions and their sensitivity have not been known, 

preliminary calculation for preparing initial conditions was conducted. In the preliminary calculation, pressure 

head distribution of whole calculated profile -100cmH2O, and temperature profile was after the observed data on 

December 31
st
, 2008. With these I.C.s , one year numerical simulation with B.C.s representing climate data of 

the experimental site had been done. Results of the preliminary calculation were employed as I.C.s for exact 

numerical simulation. Then model validation was done by comparing with the monitored and simulated values. 

 
Table 1.  Boundary Conditions and Input Data. 

 Boundary Condition Input Data 

Water Upper Precipitation intensity [cm/day] Rainfall intensity 

  Evaporation rate [cm/day] Air temp. and R.H. 

 Lower Free drainage  

Heat Upper Surface heat flux [MJ m
2
/day] Solar radiation, air temp., wind speed, sunshine hour, 

  Sensible heeat flux of precipitation 

[MJ m
2
/day] 

Rainfall intensity & Air temp. 

 Lower Zero gradient  

 

Results and Discussion 
Fitting curves and measured soil water retention curves, unsaturated hydraulic conductivity and the relationship 

between volumetric water content and thermal conductivity for Kuroboku and Tachikawa loam are shown in 

Figure 1 from (a) to (c). Predicted solar radiation Rs and surface heat flux G were compared with observed ones 

as shown in Figure 2. Positive values indicate an incoming flux to the land surface (downward) while negative 

values imply outgoing flux from the land surface (upward). Both simulated surface heat flux and solar radiation 

described the dynamics of monitored values well. The meteorological model which employed HYDRUS is 

reasonable and proper for not only predicting soil surface radiation, but also producing thermal B.C. for soil 

surface.  
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Figure 1. Simulated soil physical properties (a) water retention curves for Kuroboku and Tachikawa loam andisol, 

(b) unsaturated hydrolic conductivity (c) relation ship between soil moisture and soil thermal conductivity. 
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Figure 2. Validation of meteorological model (a) Surface heat flux (b) Solar radiation. 

 

Figure 3 shows the soil temperature change at the depth of 3cm from (a) fall to winter, and (b) spring to 

summer. Simulated results described the observed temperature well especially in spring to summer. However, 

from fall to winter, simulated results tended to be underestimated soil temperature. It may be caused by lack of 

term describing latent heat and changes in heat capacity due to soil freezing in heat flow equation. Where soil 

frost is observed, it is better to consider the change in the amount of latent energy stored in the ice (Hansson et 

al. 2004) 

 

-10

0

10

20

30

40

310 315 320 325 330 335 340 345 350

T
em

p
er

at
u
re

(℃) Simulated

Observed

Average daily air temp

Depth = -3cm

-10

0

10

20

30

40

510 515 520 525 530 535 540 545 550

T
em

p
er

at
u
re

(℃)

Simulated

Observed

Average daily air temp

Depth = -3cm

 

 (a) 

(b) 

 
Figure 3. Comparison between simulated and observed soil temperature at the depth of 3cm (a) from DOY 250 (6th 

Sept., 2008) to DOY350 (15th Dec., 2008), (b) from DOY 510 (24th May, 2009) to DOY 550 (3rd July, 2009). 

 

Figure 4 depicts daily rainfall record and simulated and measured soil moisture at four depths 7cm from 

DOY526 (9
th
 June, 2009) to DOY609 (28

th
 August, 2009). We could obtain the simulated soil moisture change 

reacting to the frequent rainfall and evaporation which is characteristic of the monsoon region. Recently, several 

kinds of GCM have been produced and improved in physical reliability and both spatial and temporal 

resolution. For example, some models provide predicted climate change in daily maximum, minimum and 

mean air temperatures, daily total precipitation, and daily accumulated shortwave radiation (Okada et al. 2009). 

Using these predicted climate data at such high temporal resolution, it will be possible to predict effects of 

climate change on soil physical condition in vadose zone with HYDRUS model as future work.  
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Figure 4. Comparison    of predicted and observed soil temperature at the depth of 7cm from DOY 526 (9th June, 

2009) to DOY609 (28th August, 2009). 

 

Conclusions 
We validated the model of simultaneous liquid water, vapor and heat transport across the border between 

atmosphere and vadose zone of arable land under a monsoonal climate with HYDRUS by comparing 

numerically simulated and observed values of surface energy balance, soil temperature and soil moisture. In 

calculation, soil hydraulic and thermal parameters were obtained by laboratory experiments and meteorological 

data being distributed to public had been used for input data for B.C.s. The simulation in general represented the 

monitored data well. So HYDRUS models could be considered to be proper and reasonable for the future use 

under monsoonal climate region. To improve the accuracy of the model, it would be necessary to consider the 

effect of soil freezing in winter.  
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Abstract 
Simulation of soil aggregate stability is a suitable method for saving time and cost spent for direct measurement. 

This research comprises regression pedotransfer functions (RegPTFs) and artificial neural networks (ANNs) for 

estimation of soil aggregate stability. 140 soil samples from forest and rangland's soils of Guilan Province were 

collected and geometric mean diameter (GMD), %silt (Si), %clay (Cl), %sand (Sa), bulk density (BD), 

equivalent carbonate calcium (CaCO3), particle density (PD), soil mechanical resistance (Load), pH, electrical 

conductivity (EC) and %organic matter (OM) values were determined. The data were split randomly into a 

calibration data subset (112 samples) and validation data subset (28 samples). Regression pedotransfer functions 

was performed by stepwise method and for establishing ANNs we used Marquardt-levenburg training algorithm 

and 3-layer perceptron structure with number of six neurons in one hidden layer. The best model of Regression 

functions for calibration GMD data was GMD=6.926-0.118pH-2.216PD-0.002Sa+0.103Load with Radj
2
=0.39. 

For determination of best ANNs model, we used five input patterns. Result showed that artificial neural 

networks with pH-PD-Sa-Load input pattern with Radj
2
= 0.87 for calibration GMD data, had most accurate 

prediction. With comparison of ANN with pH-PD-Sa-Load input pattern and regression pedotransfer functions, 

we found that ANNs with pH-PD-Sa-Load input pattern had higher Radj
2
 and Lower MSD (mean square of 

deviation) and hence ANNs could estimate soil aggregate stability better than regression pedotransfer functions. 

 

Key Words 
Simulation, soil aggregate stability, Pedotransfer function, artificial neural networks 

 

Introduction 
Soil aggregate stability determination is essential to erosion and conservation of soil, but direct measurement of 

Soil aggregate stability is time consuming and costly and so are called "Costly measured properties". However 

several researches have been done for indirect estimation of Soil aggregate stability from surrogate data such as 

texture, organic matter and bulk density. Regression pedotransfer functions and artificial neural networks are 

methods that can be used for simulation of Soil aggregate stability. Bouma (1989) expressed relationship 

between soil hydraulic properties and surrogate data such organic matter and bulk density and named it 

regression pedotransfer functions. Using regression pedotransfer function is not restricted to soil hydraulic 

properties estimation and used for simulation of soil chemical, biological and other physical properties.  

Artificial neural networks are intelligent modeling methods and can be used for costly measured soil properties 

estimation. They have the capability of learning complex relationship between multiple input and output 

variables (Nemes et al. 2002). Analysis of the ANN parameters suggested that more input variable and accurate 

data set were necessary to improve the prediction of costly measured soil properties (Tamari et al. 1996; 

Merdun et al. 2006). 

 

Methods 
In this research, 140 soil samples were collected from forest and rangland's soils of Guilan province. Soil 

samples were taken in each field at 0–20 cm depth for chemical and physical analyses. Then organic matter was 

determined by the Walkley and Black method, equivalent carbonate calcium was determined by titration 

method, pH was measured in suspension of soil to 0.01 M CaCl2 ratio of 1:2.5 and electrical conductivity was 

measured in suspension of soil to water ratio of 1:5 (Page et al. 1982). Bulk density was determined by cylinder, 

particle density was determined by pycnometer, soil mechanical resistance was determined by penetrometer, 

fractions were used to measure particle size distributions (after complete dispersion with sodium 

hexametaphosphate) by the hydrometer method (klut. 1986) were determined as independent variables, and 

geometric mean diameter was determined by wet sieving apparatus (klut. 1986) was measured as dependent 

variable. The data were split randomly into a calibration data subset (112 samples) and validation data subset 
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(28 samples). Moreover, data subset used for determining the performance of two simulation method; artificial 

neural networks (ANNs) and regression pedotransfer functions (RegPTFs). 

Estimation of soil aggregate stability using RegPTFs were initially carried out using SPSS 14 for windows with 

stepwise method.  

For establishing ANNs, We used Neural Works plus software with marquardt-levenburg training algorithm and 

3-layer perceptron structure with number of six neurons in hidden layer. The number of neurons in the input and 

output layers corresponded to the number of Input and output variables. The number of hidden layers and its 

neurons is determined by try and error method and assumed equal to 1 and 6 respectively. Activation function 

was defined as a sigmoid tangent function. The performance of the PTFs estimating the soil aggregate stability, 

were assessed using two criteria: coefficient’s statistics of corrected explanation (Radj
2
), mean square of 

deviation (MSD). 

 
Results 
Regression equation for estimation of calibration GMD data are showed in Table 1. Our postulate was the best 

model has the lowest MSD and the highest Radj
2
.
 
Descriptive statistics for GMD using five ANN models and 

regressions pedotransfer functions are summarized in Table 2. Graphs for best model ANN and same pattern in 

RegPTFs calibration data subset for GMD estimation with input independent data pH-PD-Sa-Load are showed 

in Figure 1. The Radj
2
 values of both five ANN models and regression pedotransfer functions were significant 

based on the analysis of variance (ANOVA test) (P<0.01). Generally, both ANN and regression models could 

predict GMD accurately but ANN performed slightly better. Artificial neural networks are better than regression 

models for simulation soil aggregate stability (Mohammadi. 2002). 

 

  
 Table 1. Regression equation for estimation of GMD of calibration data  

 

 

 

 

 

 

 

 

 

 

 
Table 2. Descriptive statistics for GMD using 16 ANN models and regressions pedotransfer functions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

input independent variables regression equation 

Load-Sa-CaCO3 GMD=0.526+0.109Load-0.005Sa-0.016 CaCO3 

Sa-PD-CaCO3 GMD=9.419-0.004Sa-2.946PD-0.026 CaCO3 

pH-PD-Sa-Load GMD=6.926-0.118pH-2.216PD-0.002Sa+0.103Load 

pH-PD-Sa GMD=10.041-0.144pH-2.945PD-0.003Sa 

pH-PD-Si GMD=9.935-0.142pH-3.008PD+0.004Si 

input independent 

variables 

 

Radj
2

 (cal) 

ANN 

MSD 

(cal) 

ANN 

Radj
2

 (cal) 

RegPTFs 

MSD 

(cal) 

RegPTFs 

Radj
2
 

(test) 

ANN 

MSD 

(test) 

ANN 

Load-Sa-CaCO3 0.85 0.066 0.34 0.288 0.77 0.129 

Sa-PD-CaCO3 0.77 0.101 0.22 0.371 0.28 0.407 

Ph-PD-Sa-Load 0.87 0.058 0.39 0.265 0.57 0.245 

pH-PD-Sa 0.61 0.172 0.17 0.371 0.09 0.516 

pH-PD-Si 0.83 0.073 0.20 0.372 0.37 0.345 
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Figure 1. Graphs for best model ANN and similar pattern in RegPTFs calibration data subset for GMD estimation 
with input independent data (pH-PD-Sa-Load) 

 

 

Conclusion 
The best model of Regression functions for calibration GMD data was GMD=6.926-0.118pH-2.216PD-

0.002Sa+0.103Load with Radj
2
=0.39 and MSD=0.265 for determination of best ANNs model, we used five input 

patterns. Result showed that artificial neural networks with pH-PD-Sa-Load input pattern with Radj
2
= 0.87 and 

MSD=0.058 for calibration GMD data, had most accurate prediction. With comparison of ANN with pH-PD-

Sa-Load input pattern and regression pedotransfer functions, we found that ANNs with pH-PD-Sa-Load input 

pattern had higher Radj
2
 and Lower MSD (mean square of deviation) and hence ANNs could estimate soil 

aggregate stability better than RegPTFs. 
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Abstract 
Soil water erosion prediction is the backbone of outlining hot spots where soil and nutrient loss might reach the 

biggest proportion, causing yield loss thus deficit for the farmer; sedimentation on the farm – deficit again –; 

siltation (filling up) and pollution of waterways and lakes putting the task of cleaning the roadside on the 

shoulder of local communities etc. It is important to find the best solution, the most appropriate, close to natural 

reality calculation or modelling of soil and nutrient loss and runoff. In the present study WEPP and USLE 

model were used to prove their efficiency on a slope of intensive arable farmland, close to the Koppány Creek. 

Along the creek we can find a NATURA 2000 site so it is not only important for the sake of the clean water 

itself but there are high natural values to be considered. The results show that on the upper and middle slope 

sections WEPP calculates more soil loss than USLE while at the bottom of the slopes WEPP calculates much 

more than USLE. On site investigations proved that the lower part of the slope is sedimented so USLE is closer 

to reality at the bottom of the slope. 

 

Key Words 
Soil water erosion, modelling, soil loss, WEPP, USLE, natural values. 

 

Introduction 
Soil erosion is a serious problem on agricultural fields of Hungary. In the hilly areas precipitation is between 

600 and 800 mm/year. Even the relatively low intensity rainfalls are causing gullying and rills. The crop rotation 

structure does not favour soil protection, contains a high percentage of medium or low soil protection crop 

(Centeri 2002, Szilassi et al. 2006). Soil and nutrient loss, runoff and sediment yield calculations (Jakab and 

Szalai 2005) are important in protecting our (still) valuable arable lands. Examination of soil parameters are 

essential to teach farmers for better management practices in order to save nutrients, soils, money, time and to 

protect the environment (Jordan et al. 2005). Soil and nutrient loss are calculated in erosion models all over the 

world (Gournellos et al. 2004), especially in connection with arable cultivation. The area suffers “rural exodus”, 

all the young people have already left the region thus land use can be characterized by intensive farming on the 

areas of the former cooperative and quasi extensive use on the other part of the area thanks to the lack of local 

workers. 

 

Methods 
The well-known USLE (Wischmeier and Smith 1978) and WEPP (Flanagan et al. 2007) models were used for 

the analyses. The Water Erosion Prediction Project (WEPP) was started in 1985. Its purpose was to develop 

new-generation water erosion prediction technology, originally (as well as the USLE) for use in the USA. The 

WEPP model was developed by the USDA-ARS to replace empirically based erosion prediction technologies, 

such as USLE, RUSLE, MUSLE. The WEPP model simulates many of the formerly missing physical processes 

important in soil erosion (e.g. infiltration, runoff, raindrop and flow detachment, sediment transport, deposition, 

plant growth, and residue decomposition) as input parameters. The WEPP project is similar to USLE because it 

was constructed based on extensive field experimental program (on cropland, rangeland and disturbed forest 

sites). Sufficient amount of data was needed to parameterize and test the model. The model became functional 

with the cooperation of research locations, laboratories and universities. The WEPP model can be used on hill 

slopes and on smaller watersheds. The model can be used with Microsoft Windows operating system graphical 

interfaces, web-based interfaces, and integration with Geographic Information Systems since 1995. Watershed 

channel and impoundment components, CLIGEN weather generator, the daily water balance and 

evapotranspiration routines, and the prediction of subsurface lateral flow along low-permeability soil layers was 

developed and continuously improved (Chaves and Nearing 1991; Risse et al. 1994; Flanagan et al. 2007; Deer-
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Ascough et al. 1995; Grismer 2007; Moffet et al. 2007; Kim et al. 2007; Bonilla et al. 2007; Moore et al. 2007). 

 

WEPP is widely used for soil loss calculations (Pandey et al. 2008, Shen et al. 2009, Irvem et al. 2007, 

Baigorria and Romero 2007). 

 

Input parameters for the WEPP model: rainfall (amount 16.50 mm, duration 48 min), normalized peak intensity 

(2.73), normalized time to peak (0.15). Land use was tilled fallow. Slope length and slope angle was calculated 

based on the topography map of the area and on in situ check with GPS. Input parameters for the USLE model 

were: R = E = 0.06934, K = 0.009, LS = 4.75 (slope length was 240m (first section’s plane length was 44.16m, 

second section’s plane length was 157.98m, third section’s plane length was 37.85m; slope length was 8, 6 and 

4%), C = 1 (for black fallow), P=1. 

 

Results 
The results of soil loss calculations with USLE model can be found in Table 1. 

 
Table 1. Input parameters and results of the simulation with the USLE model, Gerézdpuszta, Hungary 

Slope section R factor* K factor L factor S factor Soil loss (kg/m
2
) 

Upper 0.38 1.42 0.85 0.543496 

Middle 0.009 1.83 0.57 0.011124 

Lower 

0.06934 

0.0001 1.31 0.35 0.000054 

*in this special case, since the calculation is for one rainfall event, this is erosivity index, C and P factors = 1 

 

The results of soil loss calculations with WEPP model can be found in Tables 2-4. 

 
Table 2.  Results of the simulation with the WEPP model for the upper slope third, Gerézdpuszta, Hungary 

PD (m) SOL PD (m) SOL PD (m) SOL PD (m) SOL PD (m) SOL 

(m) (kg/m
2) (m) (kg/m

2) (m) (kg/m
2) (m) (kg/m

2) (m) (kg/m
2) 

0.44 0.014 9.27 0.016 18.11 0.447 26.94 0.683 35.77 0.864 

0.88 0.014 9.72 0.042 18.55 0.461 27.38 0.693 36.21 0.872 

1.32 0.014 10.16 0.076 18.99 0.474 27.82 0.703 36.65 0.880 

1.77 0.014 10.60 0.111 19.43 0.487 28.26 0.713 37.10 0.888 

2.21 0.014 11.04 0.146 19.87 0.500 28.71 0.723 37.54 0.895 

2.65 0.014 11.48 0.181 20.31 0.513 29.15 0.733 37.98 0.903 

3.09 0.014 11.92 0.217 20.76 0.525 29.59 0.742 38.42 0.910 

3.53 0.014 12.37 0.246 21.20 0.538 30.03 0.752 38.86 0.918 

3.97 0.014 12.81 0.264 21.64 0.550 30.47 0.761 39.30 0.925 

4.42 0.014 13.25 0.281 22.08 0.562 30.91 0.770 39.75 0.933 

4.86 0.014 13.69 0.297 22.52 0.574 31.36 0.779 40.19 0.940 

5.30 0.014 14.13 0.313 22.96 0.585 31.80 0.788 40.63 0.947 

5.74 0.014 14.57 0.329 23.41 0.597 32.24 0.797 41.07 0.954 

6.18 0.014 15.02 0.345 23.85 0.608 32.68 0.806 41.51 0.961 

6.62 0.014 15.46 0.360 24.29 0.619 33.12 0.814 41.95 0.968 

7.07 0.014 15.90 0.375 24.73 0.630 33.56 0.823 42.40 0.975 

7.51 0.014 16.34 0.390 25.17 0.641 34.00 0.831 42.84 0.982 

7.95 0.014 16.78 0.405 25.61 0.652 34.45 0.840 43.28 0.988 

8.39 0.014 17.22 0.419 26.06 0.662 34.89 0.848 43.72 0.995 

8.83 0.014 17.66 0.433 26.50 0.673 35.33 0.856 44.16 1.002 

PD = Profile distances are from top to bottom of hillslope, SOL = Soil loss 
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Table 3.  Results of the simulation with the WEPP model for the middle slope third, Gerézdpuszta, Hungary 

PD (m) SOL PD (m) SOL PD (m) SOL PD (m) SOL PD (m) SOL 

(m) (kg/m
2) (m) (kg/m

2) (m) (kg/m
2) (m) (kg/m

2) (m) (kg/m
2) 

45.74 0.419 77.34 0.520 108.94 0.609 140.53 0.626 172.13 0.696 

47.32 0.424 78.92 0.525 110.52 0.608 142.11 0.630 173.71 0.699 

48.90 0.430 80.50 0.529 112.10 0.608 143.69 0.633 175.29 0.702 

50.48 0.435 82.08 0.534 113.68 0.607 145.27 0.637 176.87 0.706 

52.06 0.440 83.66 0.539 115.26 0.606 146.85 0.641 178.45 0.709 

53.64 0.445 85.24 0.543 116.84 0.605 148.43 0.644 180.03 0.714 

55.22 0.451 86.82 0.548 118.41 0.603 150.01 0.648 181.61 0.736 

56.80 0.456 88.40 0.552 119.99 0.602 151.59 0.651 183.19 0.762 

58.38 0.461 89.98 0.557 121.57 0.601 153.17 0.655 184.77 0.787 

59.96 0.466 91.56 0.561 123.15 0.599 154.75 0.658 186.35 0.813 

61.54 0.471 93.14 0.566 124.73 0.598 156.33 0.662 187.93 0.839 

63.12 0.476 94.72 0.570 126.31 0.596 157.91 0.665 189.51 0.864 

64.70 0.481 96.30 0.575 127.89 0.597 159.49 0.669 191.09 0.890 

66.28 0.486 97.88 0.579 129.47 0.600 161.07 0.672 192.67 0.908 

67.86 0.491 99.46 0.584 131.05 0.604 162.65 0.675 194.25 0.912 

69.44 0.496 101.04 0.588 132.63 0.608 164.23 0.679 195.83 0.916 

71.02 0.501 102.62 0.592 134.21 0.611 165.81 0.682 197.41 0.919 

72.60 0.506 104.20 0.597 135.79 0.615 167.39 0.686 198.99 0.923 

74.18 0.510 105.78 0.601 137.37 0.619 168.97 0.689 200.57 0.926 

75.76 0.515 107.36 0.605 138.95 0.622 170.55 0.692 202.15 0.930 

PD = Profile distances are from top to bottom of hillslope, SOL = Soil loss 

 
Table 4. Results of the simulation with the WEPP model for the lower slope third, Gerézdpuszta, Hungary 

PD (m) SOL PD (m) SOL PD (m) SOL PD (m) SOL PD (m) SOL 

(m) (kg/m
2) (m) (kg/m

2) (m) (kg/m
2) (m) (kg/m

2) (m) (kg/m
2) 

202.53 1.191 210.10 1.184 217.67 1.176 225.24 1.169 232.81 1.161 

202.90 1.191 210.47 1.183 218.05 1.176 225.62 1.168 233.19 1.161 

203.28 1.191 210.85 1.183 218.42 1.175 225.99 1.168 233.56 1.160 

203.66 1.190 211.23 1.183 218.80 1.175 226.37 1.168 233.94 1.160 

204.04 1.190 211.61 1.182 219.18 1.175 226.75 1.167 234.32 1.160 

204.42 1.189 211.99 1.182 219.56 1.174 227.13 1.167 234.70 1.158 

204.80 1.189 212.37 1.181 219.94 1.174 227.51 1.166 235.08 1.127 

205.18 1.189 212.75 1.181 220.32 1.173 227.89 1.166 235.46 1.083 

205.55 1.188 213.12 1.181 220.69 1.173 228.27 1.166 235.84 1.040 

205.93 1.188 213.50 1.180 221.07 1.173 228.64 1.165 236.21 0.995 

206.31 1.187 213.88 1.180 221.45 1.172 229.02 1.165 236.59 0.951 

206.69 1.187 214.26 1.180 221.83 1.172 229.40 1.165 236.97 0.905 

207.07 1.187 214.64 1.179 222.21 1.172 229.78 1.164 237.35 0.859 

207.45 1.186 215.02 1.179 222.59 1.171 230.16 1.164 237.73 0.812 

207.82 1.186 215.40 1.178 222.97 1.171 230.54 1.163 238.11 0.764 

208.20 1.186 215.77 1.178 223.34 1.170 230.92 1.163 238.49 0.716 

208.58 1.185 216.15 1.178 223.72 1.170 231.29 1.163 238.86 0.667 

208.96 1.185 216.53 1.177 224.10 1.170 231.67 1.162 239.24 0.617 

209.34 1.184 216.91 1.177 224.48 1.169 232.05 1.162 239.62 0.566 

209.72 1.184 217.29 1.176 224.86 1.169 232.43 1.162 240.00 0.514 

PD = Profile distances are from top to bottom of hillslope, SOL = Soil loss 

 

Tables 2-4. show that a not too big rainfall event, arriving on the area with bad timing (no surface cover) can 

cause 10 t ha
-1

 soil loss. 

 

Conclusion 
It has always been emphasized that local measurements have very high importance so we do not wish to 

conclude this well-known fact again but we would like to call attention on carefully choosing the input 

parameters. In the present case a very simple method proved that the high amount of calculated soil loss is not 

proper since parent material was found at the depth of 180-200cm below surface. 

On the other hand, it is important information for local farmers that a relatively small (45mm h
-1

) intensity 

precipitation can cause very high amount of soil loss. The only way to protect the land against it is to have some 
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soil loss measure, plant residues on the surface, another crop or some technical improvements. 

Furthermore detailed local knowledge from the soils can save energy, fertilizer, time and money for the farmers. 
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Abstract 
A simple approach to predict spatial pattern of SOC using a surrogate variable, soil Munsell value, with the aid 

of digital terrain analysis is presented. Digital elevation models (DEMs) were prepared using readily available 

digital topographic maps and then enhanced for a small sloping catchment in the Adelaide hills using 

plausibility algorithms. Seven terrain parameters were calculated from the DEMs. One hundred random points 

were identified across the 5.6 ha site and soil Munsell value was obtained. Correlation analysis showed 

elevation, specific catchment area, profile curvature, and wetness index influence soil Munsell value. It was also 

found that the application of plausibility algorithms to DEMs derived from topographic maps produced better 

correlation coefficients compared to unsmooth DEMs. 

 

Key Words 
Soil Munsell value, digital terrain parameters. 

 

Introduction 
Soil organic carbon (SOC) influences crop yield and acts as binding material for nutrients and agrochemicals 

(Konen et al. 2003; Lal 2007). Quantifying and mapping the spatial distribution of SOC is therefore important 

to an effective farm management as well as in broad carbon cycle modelling (Wills et al. 2007). Accurate but 

practical means of elucidating spatial distribution of SOC is needed because current laboratory quantification is 

overwhelmingly expensive. Soil colour, particularly Munsell value, has been used as a surrogate for SOC 

(Konen et al. 2003; Schulze et al. 1993; Wills et al. 2007) where darker soils are associated with high SOC and 

lighter soils with low SOC. Although soil colour determination using Munsell Colour Chart is subjective, it can 

be used to assess the distribution of SOC across large landscapes (Wills et al. 2007). SOC pattern in the 

landscape is also strongly influenced by the distribution of water and soil material (Pennock and Corre 2001) 

such that it can be predicted from terrain. Terrain parameters can be readily derived from digital elevation 

models (DEM) and particularly those relating to water flow accumulation and dissipation are well suited to 

predict SOC and soil colour (Gessler et al. 1995; Moore et al. 1991). However, SOC distribution is site specific 

and fundamentally affected by agronomic management. The utility of soil colour measurement and terrain 

analysis, which are both easy and intuitive, to infer spatial distribution of SOC in an agronomically homogenous 

landscape has not been fully explored. Thus, this research was conducted if terrain attributes calculated from 

topographic maps can be used to infer spatial distribution of SOC through soil colour in a hilly apple tree 

orchard. This research also investigated the effect of plausibility algorithms in preparing hydrologically correct 

DEM. 

 
Methods 
A sloping area located within the Mt. Lofty Ranges (30 km east of Adelaide, South Australia) has been selected 

for this purpose (Figure 1). The subcatchment has a relief of about 100 m and a Mediterranean climate. The site 

has brown duplex soil overlying a Stonyfell Quartzite formation (Heath 1963). The apple orchard was 

established in the early 1950s and little soil trenching was done prior to tree establishment. Topographic maps 

(1:10,000 and 1:50,000) in digital format have been sourced from the Department of Environment and Heritage 

– South Australia. Both maps were derived from analogue photogrammetric techniques and scanned then 

converted to GIS formats. The 1:10,000 map has a contour interval of 5 m. The 1:50,000 map has a contour 

interval of 10 m. Both maps have unknown vertical and horizontal accuracy. 

A 5x5 m and a 10x10 m pixel DEM were generated for each of the two topographic data using the Topo to 

Raster tool in ArcGIS 9.2 incorporating drainage enforcement and sink filling. One of the main problems in 

soil-terrain modelling is the accuracy of available topographic data suitable for regional soil mapping. This can 

addressed through plausibility algorithms that reduces errors in DEM generation (Hengl et al. 2004).Two 

plausibility algorithms were then carried out to enhance the quality of the DEMs. The first algorithm involved 

the reduction of outliers through low pass filtering. The second one involved the reduction of padi terraces using 

focal mean statistics. Both algorithms were done on a 3x3 moving window. This resulted to four (4) DEMs 
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namely: s5-5; s5-10; s10-5; and s10-10. These DEMs where then compared with the interpolated 5x5 m pixel 

DEM of the 1:10,000 topographic map and 10x10m pixel DEM of the 1:50,000 topographic map (hereinafter 

referred as r5 and r10, respectively). Seven (7) key terrain parameters (Table 1) were calculated in GIS 

environment for each of the DEM using a freely available software called Terrain Analysis System (Lindsay 2006) 

and the distributional algorithm developed by Ostendorf and Reynolds (1993).  

 

One hundred locations were randomly selected across a 5.6 ha area within the subcatchment. Points were 

referenced on the ground using a handheld high-sensitivity GPS. Each point consisted of 5 soil samples 0.5 m 

apart in a Z configuration. The top 10 cm of soil found between apple tree rows was obtained with a soil auger. 

Soil samples were air-dried, composited and analysed in the laboratory. Air-dry soil colour was determined 

using Munsell® Colour Chart (1998 edition) under natural diffuse daylight. Soil Munsell value was extracted 

and tabulated against the aforementioned topographic parameters including elevation obtained by nearest 

neighbourhood sampling of the DEMs. Spearman rank correlation analysis was performed to determine the 

degree of relationship and to compare the various DEM qualities and resolutions. 

 

 
Figure 1.  Location of the study site. 

 
Table 1.  Terrain parameters calculated in this study. 

Attribute Description 

Slope,   

Plan curvature (PlanC ), /m a measure of topographic convergence and divergence 

Profile curvature (ProfC), /m a measure of flow acceleration or deceleration 

Tangential curvature (TanC), /m a measure of flow convergence and divergence 

Specific catchment area (SCA), m
2
/m

 
the ratio of the area upslope of a contour segment that contributes flow to 

that segment and the length of that segment 

Sediment transport capacity index (STCI)  equivalent to RUSLE Length-Slope factor 

Wetness index (WI) the ratio of specific catchment area and slope 

 
Results 
The resulting DEM varied across the various pixel qualities and resolutions prepared as evidenced by the 

differing statistical measures of terrain parameters (Table 2). Slope and curvature parameters, for instance, 

became subtler after two smoothing operations (low pass filtering and focal mean statistics) were done on both 

topographic map scales. Moreover, increasing the pixel size resulted to a more generalised topography. 

Thompson et al (2001) attributed this to loss of details as a result of smoothing the topography.   

 

Spearman rank correlation analysis reveals elevation, ProfC, SCA and WI correlates well with soil Munsell 

value (Table 3) in the study site. These observations were congruent to those of Gessler et al (2000), Moore et 

al (1993), Takata et al (2007), and Thompson et al (Thompson et al. 2001). The directions of correlation were 

similar for all DEMs prepared. However, the magnitude and significance varied depending on the quality of the 

DEM. A smoother DEM improved the correlation regardless pixel size.  
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Table 2.  Summary statistics of terrain parameters across the different DEM resolution and quality. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Min– minimum; max – maximum; µ – mean; S – standard deviation; r5 – interpolated 5m pixel DEM from 1:10,000 map; 

r10 – interpolated 10m pixel DEM from 1:50,000 map; s5-5 – smooth 5m pixel DEM from 1:10,000 map; s5-10 – smooth 

10m pixel DEM from 1:10,000 map; s10-5 – smooth 5m pixel DEM from 1:50,000 map; s10-10 – smooth 10m pixel DEM 

from 1:50,000 map 

 
Table 3. Comparison of DEM using Spearman's rank correlation of Munsell value and terrain parameters. 

DEM Parameters 

R5 S0505 S0510 R10 S1005 S1010 

Elevation 0.488 *** 0.494 *** 0.488 *** 0.492 *** 0.487 *** 0.48 *** 

Slope 0.014 ns 0.032 ns 0.025 ns 0.12 ns 0.108 ns 0.123 ns 

PlanC -0.089 ns -0.196 * -0.24 * -0.075 ns -0.102 ns -0.147 ns 

ProfC -0.152 ns -0.267 ** -0.35 *** -0.261 ** -0.235 * -0.364 *** 

TanC -0.102 ns -0.204 * -0.25 * -0.078 ns -0.061 ns -0.116 ns 

SCA -0.354 *** -0.432 *** -0.402 *** -0.287 ** -0.358 *** -0.353 *** 

STCI -0.222 * -0.273 ** -0.314 *** -0.108 ns -0.124 ns -0.107 ns 

WI -0.39 *** -0.466 *** -0.407 *** -0.224 * -0.308 ** -0.357 *** 

Please see DEM notation on Table 2; 
*
 α = 0.05; 

**
 α = 0.01; 

***
 α = 0.001; ns – not significant 

 
Conclusion 
Various digital terrain models have been derived from existing topographic data (available from state mapping 

agencies; derived from early topographic surveys) and provided valuable tool in soil-landscape modeling. 

Smoothing the DEM enhanced terrain models. 

 

DEM Terrain parameters Statistics 

r5 s5-5 s5-10 r10 s10-5 s10-10 

Slope min 6.08 6.81 6.70 2.80 3.38 1.96 

 µ 13.2 12.9 11.9 12.4 12.3 11.17 

 max 20.9 19.2 16.9 21.6 20.3 18.1 

 S 2.99 2.62 2.41 3.90 3.76 3.21 

Plan curvature min -3.92 -3.27 -2.10 -3.02 -3.54 -3.42 

 µ -0.179 0.166 0.0460 -0.059 0.0715 -0.0258 

 max 4.19 1.88 1.23 3.68 2.24 1.20 

 S 1.11 0.86 0.611 1.16 0.915 0.738 

Profile curvature min -0.909 -0.359 -0.268 -0.700 -0.387 -0.238 

 µ -0.0079 -0.00766 -0.0181 0.00617 0.0167 0.00854 

 max 0.733 0.599 0.323 0.882 0.453 0.308 

 S 0.260 0.159 0.117 0.230 0.213 0.136 

Tangential curvature min -0.709 -0.374 -0.213 -0.499 -0.333 -0.214 

 µ -0.0302 -0.0344 -0.0157 -0.0143 -0.0177 -0.00743 

 max 0.781 0.421 0.279 0.658 0.671 0.307 

 S 0.222 0.159 0.104 0.206 0.174 0.109 

Specific catchment area  min 9.99 5.08 10.0 18.5 5.11 10.0 

 µ 58.3 54.1 76.2 84.6 76.5 78.4 

 max 392. 770 480 1680. 1370 570 

 S 56.5 79.3 81.2 170. 168 88.6 

Sediment transport capacity index min 0.999 0.589 1.56 0.750 0.771 1.19 

 µ 5.71 5.15 5.49 5.89 5.33 4.99 

 max 18.6 21.9 14.5 14.3 31.5 13.2 

 S 3.02 3.09 2.53 2.83 4.35 2.43 

Wetness index min 3.82 2.94 3.51 4.22 2.99 3.97 

 µ 5.28 5.12 5.59 5.62 5.29 5.66 

 max 7.69 8.30 7.95 10.4 9.71 9.72 

 S 0.67 0.824 0.846 0.849 1.06 0.987 
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Abstract 
This paper examines a novel approach to examining soil-landscapes for digital soil mapping by using image 

clustering approaches.  The move to digital soil mapping is creating a paradigm shift for many soil surveyors 

and is relying on new tools and techniques.  In Queensland, and more generally world-wide, the requirements to 

support many environmental objectives are “stretching” the existing land resource information base to the limits 

of its intended purpose when collected over the last half century.  In an attempt to utilise the knowledge 

contained in legacy mapping of Land Systems in Queensland, image clustering techniques have been tested to 

identify their suitability to spatially disaggregate existing mapping.  Since a Land System, is a recurring pattern 

of soils, terrain, geology and vegetation an approach that identifies spatial patterns and digital objects is thought 

to provide a method of extracting this knowledge for inclusion in digital soil mapping approaches in the Inland 

Burnett Catchment. 

 

Key Words 
Digital Soil Mapping, Clustering, Land Systems. 

 

Introduction 
Recent improvements in computation, information technology and the types of tools available to soil scientists 

have led to paradigm shift in land resource assessment.  Soil survey and land resource assessment is now 

moving towards digital soil mapping.  With digital soil mapping is moving out of the research phase to become 

a semi-routine technique that is used in land resource assessment (McBratney et al. 2003).  The increased access 

and use of geographical information systems (GIS), digital elevation models, geophysical tools, remotely sensed 

data and a myriad of other datasets has created a trend towards more quantitative resource assessment.  The use 

of new tools and techniques has raised the awareness of the need to capture and communicate the knowledge 

gained by surveyors (Bui 2004). 

 

With new natural resource management requirements it has become apparent that existing qualitative and non-

digital land resource information needs to be re-interpreted.  The non-sustainable management of natural 

resources has a significant impact on our quality of life (Hillel 2000).  The small-scale Land Systems mapping 

of Queensland and Northern Australia is a prime example of this type of data needing re-interpretation. This re-

interpretation fulfils the need to provide more quantitative soil-landscape attribute information at improved 

scales and resolution. A digital soil-landscape process is used to disaggregate Land Systems mapping in the 

Burnett Catchment of South East Queensland (Figure 1). 

 

Methods 
Existing Land Resource Mapping 

To overcome the lack of information available following the Second Wold War when there was increasing 

development pressures in Northern Australia, Christian and Stewart (1953, 1968) introduced the concept of land 

systems mapping.  They reason that land systems mapping would allow for a reduction in effort to gather 

knowledge about an area but would provide a broadscale framework on which further intensive studies can be 

undertaken in areas where special features are important.  They rationalise that a hierarchical approach to sub-

dividing and describing the landscape during a reconnaissance survey is best suited to covering large tracts of 

land and providing a framework for the description of the landscapes.  In the study area there are two existing 

land system mapping projects that are complemented by two 1:50,000 soil surveys. 

 

Environmental Correlation Datasets 

Several datasets for environmental correlation exist for the catchment, including a Digital Elevation Model 

(DEM), gamma-ray spectrometry, geology and climate data.  DEMs and airborne geophysics have been shown 

as useful tools for predicting soil-landscape attributes in digital soil mapping (DSM) studies. 
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The DEM has a pixel size of 25 metres and was built in ANUDEM (Hutchinson 1989) from 1:100,000 scale 

topographic data that is hydrologically correct.  A range of derivatives have been generated to use as 

environmental covariates, these include slope, topographic wetness index, relative elevation and curvatures. 

 

While the list of DEM derivatives listed above is by no means exhaustive they have previously been found to be 

useful for DSM, for example Ziadat (2005) used DEM derivatives to predict soil attributes in Jordan. 

 

 
Figure 1.  Study area location. 

 

Airborne gamma-ray spectrometry (radiometrics) measures the abundance of Potassium (K), Thorium (Th) and 

Uranium (U) in soils by detecting the gamma-rays emitted due to the natural radioelement decay of these 

elements (Wilford 2002). relates to the parent material and geochemistry of the soil (and other weathered 

materials).  Weathering modifies the distribution and concentration of radioelements compared to the original 

bedrock.  Understanding the bedrock and soil responses has proven invaluable not only for mapping soils based 

on parent materials but also for understanding geomorphic processes (Wilford, Bierwirth and Craig 1997).  K, 

Th and U behave quite differently under weathering situations. Cook et al. (1996) utilised radiometric data for 

digital soil mapping in Western Australia. 

 

The environmental correlation datasets where analysed with both statistical methods and expert opinion as to 

there usefulness for clustering.  The main statistical technique used was an analysis of variance and some 

decision tree methods to further evaluate the utility of the large number of environmental correlation layers and 

propose those to be used for clustering.  Expert opinion was included as an overarching method to validate the 

statistical techniques and ensure the correlation dataset actually had a meaning to the soil surveyor. 

 

Each of the environmental datasets required manipulation to set them to a standardised extent and cell size, but 

also to a standard data range (0 - 255).  The standard data range ensures no one variable can significantly 

outweigh the others when calculating variance in “attribute space”.  A number of the datasets where also 

manipulated to adjust their distribution to limit the effects of skewed data.  A prime example of this is Slope (as 

derived from the DEM) that has a significant skew in the towards flatter areas with a small number of high slope 

areas (Figure 2). 

 

Image Clustering Method 

The spatial disaggregation methodologies applied to the Inland Burnett Catchment area based on a Multiscale 

Object Modelling approach developed over a number of years for the analysis of remote sensing data, including 

medical imaging.  Hay et al. (2005) developed a method (Multiscale Object Specific Segmentation - MOSS) 

which involves three specific stages in the development of a series of multiscale polygons for forest inventory.  

The three stages are object analysis, object upscaling and finally the merging of regions. 

 

The merging step is named Size Constrained Region Merging (SCRM), since the regions created are determined 
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by a user defined size parameter and was proposed by Castilla (2003) to handle multiple bands in a Landsat 

Image.  SCRM is an image smoothing and merging mechanism that produces features that represent individual 

image objects and maybe converted to a vector layer with associated attributes compiled against it. 
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Figure 2.  Histograms of DEM derived Slope percentage and the transformed slope. 

 

Digital Soil Modelling 

The most appropriate method for digital soil modelling based on image clustering techniques is still being 

evaluated.  Several techniques exist to model and map the improved soil information in the pilot area of the 

Burnett Catchment.  The preference for soil attribute modelling would be to use existing knowledge from land 

systems survey to identify areas that are known.  Several methods exist for the DSM component of this project; 

these include the ASRIS methodology (McKenzie et al. 2005) to define attributes levels for soils, land units and 

land systems that may be complemented by extrapolation with fuzzy or Bayesian models.  The use of tree based 

approaches used by Zhu et al. (2004) may also be valid, especially with the parent-child relationship that exists 

from the multi-scale polygons identified by the MOSS method. 
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Conclusion 
The Multiscale Object Specific Segmentation method has the ability to provide another tool in the set of 

methods used for DSM.  The ability to identify the environmental correlation datasets used impact greatly on 

the usefulness of the method.  With the right layers selected, the method has the ability to rapidly dissect the 

landscape into units through a similar process to Air Photo Interpretation.  The rapid building of landscape units 

has the potential to improve the speed at which DSM assessments can be undertaken in areas with existing 

small-scale land resource information. 
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Abstract 
Loss of natural ecosystems and the increase of annual cropping systems are inextricably linked to ecosystem 

function and food security. Understanding how land-use change contributes to functional soil properties such as 

soil organic matter cycling will help in the design of agricultural systems in order to enhance the soil ecosystem. 

Three Millennium Village (MV) sites (Sauri, Kenya; Ruhiira, Uganda; and Mbola, Tanzania) were chosen to 

develop soil organic carbon reference values at a landscape scale. Mbola site was further selected to construct a 

chronosequence to calculate organic matter turnover rates on two different soil types prevalent across the 

landscape. These three sites represent distinct forest types and are at various stages along the restoration-

degradation pathway. The Land Degradation Surveillance Framework (LDSF) developed by Markus Walsh and 

Tor Vagen was used to sample the landscape and is a stratified random sampling design that uses a nested 

spatial hierarchy. Soil organic carbon (SOC) and stable carbon isotopes were measured on 171 composite soil 

samples from 0-20 cm and 20-50 cm depths. Paired sampling of forested and cultivated sites at the Mbola 

village was conducted and soil pits were excavated to classify and describe soil. Multilevel models were used to 

analyse variance within the hierarchy and to model parameters at different spatial scales. SOC, sand content, 

carbon isotope signatures varied between the three sites. SOC reference values and SOM turnover rates will be 

calculated and presented. 

 

Key Words 
Stable carbon isotopes, SOC, SOM. 

 

Introduction 
Loss of natural ecosystems, diminishing ecosystem function, and the prevalence of non-replenishing cropping 

systems are inextricably linked to food security. It is estimated that while 70% of Africa’s population live in 

rural areas and depend almost solely on agriculture, over half of Africa’s land is unsuitable for agriculture 

(Swift and Shepherd 2007). Degradation of soil and water resources is suggested to inhibit the needed increase 

in food production in sub-Saharan Africa (Verchot et al. 2005). Understanding how land-use change contributes 

to functional soil properties such as soil organic matter cycling may help in the design of agricultural systems in 

order to enhance the soil ecosystem. Soil provides multiple ecosystem services (i.e. medium for plant and 

agricultural production, filtering of toxins and pollutants and regulating the hydrologic cycle) (Millennium 

Ecosystem Assessment 2005).   Specifically, soil organic matter (SOM) is described as one for the three core 

soil properties contributing to soil function (Palm et al. 2007). Its depletion or degradation can have serious 

impacts on aboveground productivity. Yet, the impacts of land-use change on SOM cycling in sub-Saharan 

Africa are still understudied. A landscape-scale understanding of SOM dynamics, beyond carbon stock 

calculations, is lacking, particularly in areas where smallholder farmers critically need this information most.  

Creating regional SOC reference values for semi-natural and cultivated sites across a landscape will help guide 

management recommendations and provide useful information about basic ecosystem function for a converted 

landscape. In addition, calculating soil organic matter turnover rates will improve our understanding of effects 

of forest conversion on the carbon cycle. 

 

Soil Organic Matter Dynamics 

Stable carbon isotope signatures in the soil allude to vegetation composition because photosynthetic pathways 

of plants discriminate against the heavier carbon isotope differently. Most plants and trees, use the C3 (Calvin 

cycle) photosynthetic pathway and have a more negative δ
13

C value compared  to maize and other cereal crops 

and grasses which utilize the C4 (Hatch-Slack) pathway. Stable carbon isotopes have been used to determine the 

SOM turnover rates at local scales (Balesdent and Mariotti 1996, Bernoux et al. 1998), identify vegetative 

sources of organic matter to the soil (Roscoe et al. 2001, Krull et al. 2007), and address the impact of land 

conversion on soil condition (Vagen et al. 2006, Awiti et al. 2008, Schulp and Veldkamp 2008). This project 

will build on these studies by comparing three different forest types and utilizing a spatially balanced sampling 
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design to understand landscape-scale SOM dynamics. 

 

Methods 
Three Millennium Village (MV) sites (Sauri, Kenya; Ruhiira, Uganda; and Mbola, Tanzania) were sampled 

because they represent three distinct forest types and have varying degrees of land-use change (Table One). The 

Land Degradation Surveillance Framework (LDSF) developed by Markus Walsh and Tor Vagen was used to 

collect soil samples across the study sites.  LDSF is a stratified random sampling design using a nested spatial 

hierarchy (Figure 1). Composite soil samples were taken from four subplots within each plot from 0-20-cm and 

20-50-cm depths.  Soil samples were air dried and sieved to 2 mm. One hundred and seventy-one soil samples 

were analysed for stable carbon isotopes and soil organic carbon with a stable-isotope-ratio mass spectrometer 

on whole soil samples at Iso-analytical Laboratories in the UK (http://www.iso-analytical.co.uk/). Isotope 

results are reported in standard delta notation relative to a Pee-Dee Belemnite (PDB) standard. Twenty percent 

of the samples received a duplicate analysis for quality control. 
 

Table One. Millennium Village Site Descriptions. 

MV Site Forest Type Where on the degradation/restoration pathway 

Mbola, 

Tanzania 

Miombo Woodland Land conversion still occurring 

Ruhiira, 

Uganda 

Sub-humid highland  forest Deforested  

Sauri,  

Kenya 

Humid/sub-humid forest Was deforested, tree plantings are occurring 

 

 
Figure 1.  Land Degradation Surveillance Framework sampling design. 

 

Chronosequence Soil sampling 

To compliment this sampling strategy, eight new paired sites, forest and cultivated sites with known time since 

conversion, were selected and sampled within LDSF framework at the Mbola, Tanzania Millennium Village to 

calculate SOM turnover rates for the Miombo Woodland region. Farmer interviews provided information on 

land-use history including time since conversion for the cultivated sites. Soil pits were excavated and soils at 
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each paired site were classified using Soil Taxonomy and World Reference Base to ensure morphological 

homogeneity within the paired sites. Undisturbed soil cores were taken to determine bulk density at three depths 

0-20, 20-50, and 50-100 cm.   

 

Calculations and Statistical Modelling 

Soil organic carbon reference values will be calculated controlling for sand content for each of the sites and 

presented for the landscape. Soil organic matter turnover rates will be calculated along a chronosequence of land 

use using stable carbon isotope values and time since conversion using linear mixed effect models performed in 

the statistical package R. These data will allow us to compute the percent of tree-derived carbon in the soil 

along a chronosequence of time since conversion.  

 

Preliminary Results 
Total soil organic carbon contents and sand content were clustered for the three villages (Figure 2). Mbola, TZ 

site had the highest sand content and lowest SOC values. Delta carbon 13 values  for top and sub soil at each of 

the village sites indicate the prevalence of mixed C3-C4 systems. 

 

 
 

Figure 2.  SOC vs sand for top and subsoil samples at the three Millennium Village Sites. 

 

 
 

 
Figure 3.  SOC vs δ13C values for top and subsoil samples at the three Millennium Village Sites. 
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Abstract 
Predicting N mineralization from farmyard manure (FYM) is more difficult than from crop residues as manures 

vary greatly in composition. A laboratory incubation experiment was carried out for 98 days at 30º C under 

aerobic conditions to study the effects of gliricidia (Gliricidia sepium), a green manure crop and FYM applied 

to soil at 5 and 10 g/kg. Application of gliricidia induced N mineralization from the start of incubation process 

being greater at higher rate of application. Application of FYM increased immobilization of mineral N in soil 

irrespective of the rates of application; the mineral N in soil was completely immobilized within 2 weeks for the 

10 g/kg rate. The initial net immobilization from FYM was limited by availability of N in the soil for the higher 

rate of application.   We used the APSIM SoilN module to simulate N mineralization from these manures. The 

prediction of N mineralized from gliricidia was better than FYM. Results from the study indicated that existing 

SOILN module with the pools (FPOOLs) having the same C:N ratio did not work well in predicting the N 

mineralization from FYM. Poor prediction of N mineralized from FYM could be overcome by modifying the 

individual pools (FPOOL1, FPOOL2 and FPOOL3) and the pools C:N ratios. The modelling efficiency, a 

measure of goodness of fit between the simulated and observed data, improved significantly for the modified 

model.  

 

Key Words  
Farmyard manure, nitrogen, mineralization/immobilization, modelling, APSIM. 

 

Introduction 
The N mineralization from crop residues is influenced by the concentration of N, hemicelluose, lignin and ratios 

of chemical components such as C:N. Manures are different from crop residues as they vary greatly in 

composition (Lekasi et al. 2003), being a complex mixture of animal excreta and plant residues, with varied 

mineralization kinetics ranging from relatively
 
resistant lignin to readily available NH4

+
 and volatile

 
fatty acids 

(Van Kessel et al. 2000). Van Kessel et al (2000) reported that manure contains a range of compounds that have 

rapid or intermediate N mineralization characteristics, or that are strong immobilizers of N and suggested that 

improved estimates of manure N mineralization may be obtained by considering both the readily available N 

components and components that strongly immobilize N.  

 

Models differ in the pool structure used to describe the decomposition of organic inputs, with the pools differing 

in their rates of decomposition. The assumption that all pools have the same C:N ratio may fail to adequately 

represent the observed behaviour of organic manures.  Probert et al. (2005) found that predicting N 

mineralization from such a complex mixture was difficult with the existing models, and reported N 

mineralization from different feed and faecal materials from Africa as predicted by Agricultural Production 

Systems Simulation Model (APSIM). The APSIM SoilN module was modified based on varying C and N in 

different pools that make up the added organic matter. It was shown that the revised model was better able to 

simulate the general patterns of N mineralized that has been reported for various organic sources. To be able to 

predict N release from manures more efficiently, it is necessary that the model is flexible enough to simulate the 

N mineralization from different types of organic manures available in different parts of the world. In this study 

we used two sources of organic manures viz., green manures (Gliricidia sepium, material with low C:N ratio 

and easily decomposable in soil) vs. the farmyard manure (FYM) from subtropical India which is a more 

complex mixture than green manure in terms of quality and N mineralization pattern. This study was intended to 

provide an insight to N mineralization modeling from organic manures which are different in their biochemical 

properties (as well as C:N ratio) from the materials studied by Probert et al. (2005). In this study, the SoilN 

module of APSIM (v 5.2) has been used. 
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Materials and methods   
Green manures and farmyard manure 

The study was conducted using the field-moist soil from the top (0-15 cm) layer of a cultivated Vertisol 

(Bhopal, India at 23° 18’ N and 77° 24’ E). The incubation studied N mineralization from green manure 

(gliricidia) and FYM, using two rates of application, 5 g/kg and 10 g/kg. The properties of the gliricidia and 

FYM are given in Table 1. 

  
Table 1.  Biochemical composition of the organic manures used for simulation study.  

Proportion of C in FPOOLs (%) C:N ratio of FPOOLs Treatment Overall C/N ratio 

Pool 1 Pool 2 Pool 3 Pool 1 Pool 2 Pool 3 

FYM (UM)  30 20 70 10 30 30 30 

FYM (M  30   9 73 18 50 44 12 

* UM: unmodified; M: modified 

 
Analytical procedures  

The soil used in the incubation study had pH 8.1(in 1:2.5 soil:water suspension), organic C content of 5.1 g/kg, 

a C:N ratio 9.6, and inorganic N (NH4-N and NO3-N) content of 30 mg/kg. Total N was determined using the 

semi-micro Kjeldahl method of Bremner and Mulvaney (1982). Total C in organic materials was estimated by 

the weight loss on ignition. Lignin in the organic materials was determined using the acid detergent fibre (ADF) 

method as outlined by Rowland and Roberts (1994). Total soluble polyphenols in organic materials was 

determined by the Folin-Ciocalteau method (Constantinides and Fownes 1994). 

  

Laboratory Incubation experiment  

Finely ground gliricidia twigs (leaves and succulent stem) and FYM (collected from a typical Indian farm) were 

applied to soil at two rates of application, 5 g/kg and 10 g/kg on an oven dry-weight basis.   

For each treatment, a sample of 500 g soil was hand mixed with 2.5 g or 5.0 g of organic material (depending 

upon the rate of application), then transferred to a plastic bottle. The control treatment was soil without added 

organic materials. The treatment mixtures were maintained at field capacity throughout the incubation period by 

replacing any loss of water with the appropriate volume of distilled water at every sampling. The soil and 

organic material mixtures were incubated at 30±2 °C for 14 weeks in duplicate in a laboratory incubator. Soil 

samples were taken at 0, 1, 2, 4, 6, 8, 10, 12 and 14 weeks and analyzed immediately for inorganic N (NH4-N + 

NO3-N) using 2M KCl extraction followed by distillation. Net N mineralized during the incubation process was 

calculated as follows: 

 

(Net N mineralized from organic materials)t = (Mineral N in the treatment – mineral N in control)t. 

 

Modelling decomposition of organic materials and release of nitrogen 

Description of the APSIM SoilN module 

The APSIM SoilN module (APSIM v 5.2) represents the decomposition of organic inputs as influenced by the 

quality of organic inputs. The effect of changing the pool structure and C:N ratio of individual pools on 

decomposition of organic materials has been described by Probert et al. (2005). The APSIM SoilN module was 

modified so that the three pools that constitute added organic matter could be specified in terms of both the 

fraction of C in each pool and also their C:N ratios. The model was parameterized by associating the model 

parameters with measured properties (the pool that decomposes most rapidly equates with water-soluble C and 

N; the pool that decomposes slowest equates with lignin-C). Then the model was evaluated for N mineralized 

from gliricidia and FYM from a laboratory incubation study. 

 

Model evaluation 

The performance of APSIM simulation for prediction of net N mineralized from the application of these high 

C:N ratio materials was evaluated using two statistics: (i) the root mean square error (RMSE), and (ii) the 

modelling efficiency (EF) (Smith et al. 1996). 

  

Results and discussion 
Nitrogen mineralization from gliricidia and farmyard manure  

Total C content of the gliricidia was 40, while total N was 3.72% and hence, the C:N ratio of 11. The lignin 

content of the materials was 6.5% and that of polyphenols was 1.5%. The C:N ratio of FYM used for the study 

was 30 with lignin and polyphenols content being 11 and 1.22%. The C:N ratio of the water soluble component 

of FYM was 50.  The application of gliricidia caused net N mineralization in soil which increased with time and 
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with the rates of application (Figure 1). With increase in incubation period the difference in N mineralized 

between two rates of application became bigger. At the end of the incubation period, about 65% of applied N 

was mineralized for the 5 g/kg rate while the N mineralized from the 10 g/kg rate was 54%.   

 

With increase in incubation period, the amount of N immobilized from FYM was greater from the higher rate of 

application, and N immobilization continued till the end of the incubation period (Figure 1). The amount of N 

immobilized from the application of low rate (5 g/kg) of FYM was limited by C availability where as at higher 

rate (10 g/kg), it was limited by mineral N. Increasing the rates of application of FYM caused more 

immobilization of available N in soil system indicating utilization of available N by microbes from the soil 

environment when decomposing organic materials with high C:N ratio (Alexander 1977). 
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Figure 1.  Net N mineralization from gliricidia and FYM under different rates of application. 

 

Modelling N mineralized from gliricidia and farmyard manure 

The comparison of simulations with measured data for different rates of application gliricidia is shown in Figure 

2 (a,b). The pattern of N mineralized as seen in the observed data was well presented by the model. The amount 

of N mineralized as predicted by the model from the 10 g/kg rate of gliricidia was twice the amount N 

mineralized from the application of 5 g/kg. The model will predict that N mineralization from gliricidia depends 

on its C:N ratio, so that net N mineralized is directly proportional to rate of application. But this trend was not 

obtained from the observed data. Based on the pattern of N mineralization and the statistics used for the 

evaluation of the model the goodness of fit was quite satisfactory for gliricidia (EF = 0.87).  

 

The simulation of N mineralized from different rates of application of FYM was presented in Figure 3a and 3b. 

Assuming that added C in the three FPOOLs of the model is always in the proportion of 0.2-0.7-0.1 (as defined 

in the model for crop residues and roots), the simulation of N immobilized from both the rates of  
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Figure 2.  Net N mineralization from gliricidia under different rates of application as predicted by the model.  
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Figure 3.  Net N mineralization from FYM at two rates of application. Experimental data shown as symbols with 
bar representing ± standard errors. The dotted line is for the un-modified model, where all organic material is 

assumed to decompose with the same C:N ratio; the continuous line is for the modified model with different C:N 

ratio in each FPOOL. The parameters used to specify the proportion of C and C:N in the three FPOOLs are given 

in Table 1. 

 

FYM as predicted by the model (un-modified version) was shown in Figure 3. The goodness of fit was very 

poor for both the rates of application (RMSE = 14.69, EF = 0.05). When “FPOOLs” were specified in similar 

manner to that suggested by Probert et al. (1995) (see Table 1), the goodness of fit was better than the 

unmodified model (RMSE = 9.24, EF = 0.62). 

 

The model assumes the water soluble component of C and N as FPOOL1 and thus, from the analytical results, it 

was possible to determine the proportion of C in this pool and its C:N ratio (Table 1). This enabled us to achieve 

an acceptable fit to the observed data. We also assume that acid detergent lignin, which is proximate analysis of 

lignin, equates to FPOOL3, permitting the fraction of C in this pool to be estimated. The fraction of C in 

FPOOL2 was found by difference. Since, the overall C:N ratio (on a total dry matter basis) is also known, the 

only missing information was the distribution of water insoluble N between FPOOL2 and 3.  A series of 

simulations were carried out for the FYM with different combinations of C:N in the two pools. To obtain a 

goodness of fit shown in Figure 3, the manure required C:N ratio of FPOOL1 to be set to 50, FPOOL2 to 44, 

with the corresponding C:N ratio in FPOOL3 of 12. For FYM, the goodness of fit is substantially better in the 

modified model than the unmodified one.  
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Abstract 
The processes of N mineralization and immobilization which occur in agricultural soils during decomposition of 

crop residues are important for N dynamics in cropping systems. A laboratory incubation experiment was 

carried out for 98 days at 30º C under aerobic conditions to study the effects of rice (Oryza sativa, L.) and wheat 

(Triticum aestivum, L.) straw applied at 5 and 10 g/kg in the presence or absence of additional N (as urea). The 

study showed an interactive effect between the rate of application of the residues and additional N. We used the 

APSIM SoilN module to simulate the mineralization of N from crop residues and compared the predictions with 

the observed data from our incubation study.  Model performance was satisfactory, and the model was able to 

simulate the observed interaction between rate of application of residue and added N.   

 

Key Words 
Nitrogen, mineralization/immobilization, rice straw, wheat straw, simulation modelling, APSIM. 

  

Introduction 
In the absence of recent additions of fresh organic matter, soils generally exhibit mineralization during 

incubations. When residues are added, the net mineralization due to the added materials can be estimated as 

the difference between the amended soil and a control (without amendment). Residues with low C:N ratio 

tend to exhibit net N mineralization, while residues with high C:N ratio exhibit immobilization (Van Kessel 

et al. 2000; Qian and Schoenau 2002).  In farming systems where the straw remains on the field after 

harvest, its rapid decomposition is important to minimize negative effects on the following crops caused by 

N immobilization (Cheshire et al. 1999; Henriksen and Breland 1999). Yield depression following straw 

incorporation has been mitigated by adding inorganic N (Azam et al. 1991). Strategies for management of 

high C:N ratio residues could be improved though the use of simulation models. The objective was to 

evaluate the performance of APSIM to simulate the N mineralization pattern from high C:N ratio crop 

residues (rice and wheat straw) using a dataset from a laboratory incubation experiment that investigated 

the effects of rate of addition of residues with high C:N ratio, and added N, on the net N mineralization. 

 

Materials and methods  
Soil and crop residues 

The study was conducted using the field-moist soil from the top (0-15 cm) layer of a cultivated Vertisol 

(Bhopal, India at 23° 18’ N and 77° 24’ E). The incubation studied N immobilization from two crop residues, 

rice and wheat straw, using two rates of application and in the presence and absence of added N. The C:N ratio 

of rice was 86 and that of wheat was 79. 

  
Analytical procedures  

A portion of field-moist soil was taken for laboratory incubation, while another portion was air-dried, crushed to 

pass through a 2 mm sieve, then stored in an air-tight plastic container at room temperature. A sub-sample of 

this material was finely ground to pass 100-mesh sieve. The soil used in the incubation study had pH 8.1 (in 

1:2.5 soil:water suspension), organic C content of 5.1 g/kg, a C:N ratio 9.6, and inorganic N (NH4-N and NO3-

N) content of 30 mg/kg.  Total N using the semi-micro Kjeldahl method of Bremner and Mulvaney (1982). 

Total C in organic materials was estimated by the weight loss on ignition (Nelson and Sommer 1982).  
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Laboratory Incubation experiment  

Finely ground wheat and rice straw were applied to soil at two rates of application, 5 g/kg and 10 g/kg on an 

oven dry-weight basis. The amount of urea-N added was enough to raise the wheat straw N to approximately 

2% on dry weight basis. This required the addition of 66 mg N/kg soil where the materials were added at low 

rate of addition i.e. 5g/kg, and 132 mg/kg
 
at the high rate.  

 

For each treatment, a sample of 500 g soil was hand mixed with 2.5 g or 5.0 g of organic material (depending 

upon the rate of application), then transferred to a plastic bottle. For each treatment urea-N was added as 

appropriate. The control treatment was soil without added organic materials. The treatment mixtures were 

maintained at field capacity throughout the incubation period by replacing any loss of water with the appropriate 

volume of distilled water at every sampling. The soil and organic material mixtures were incubated at 30°C for 

14 weeks in duplicate in a laboratory incubator. Soil samples were taken at 0, 1, 2, 4, 6, 8, 10, 12 and 14 weeks 

and analyzed immediately for inorganic N (NH4-N + NO3-N) using 2M KCl extraction followed by distillation 

(Bremner 1965).   Net N mineralized during the incubation process was calculated as follows: 
 

(Net N mineralized from organic materials)t = (Mineral N in the treatment – mineral N in control)t - N added. 
 

Model evaluation 

The performance of APSIM simulation for prediction of net N mineralized from the application of these high 

C:N ratio materials was evaluated using two statistics:  (i) the root mean square error (RMSE), and (ii) the 

modelling efficiency (EF) (Smith et al. 1996). 
 

Results and discussion 
N mineralization from rice and wheat straw under laboratory incubation 

Similar results were obtained for N mineralization from both rice and wheat straw for both the rates of 

application and where urea-N was added (in Figure 1 only the data for the rice treatments are shown). 

Application of rice straw at 5 g/kg reduced the mineral N in the soil to zero (Figure 1). Increasing the rate of rice 

straw application increased the time that the mineral N in soil was maintained at very low concentration. When 

urea-N (66 mg N/kg) was added along with 5 g/kg of straw, the mineral N in soil was not reduced to zero. 
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Figure 1.  Nitrogen mineralization from rice straw under different rates of application. The doted line for control 

with 66 mg N/kg assumes all added N remain in the system. 
 

In the absence of added N, application of 5 g/kg rice straw caused rapid immobilization which reached about 40 

mg N/kg by 28 days (Figure 2a). At this time there was no mineral N in these systems (Figure 1). The 

disappearance of mineral N in the soil system was caused by microbial immobilization as reported by Recous et 

al. (1995). Increasing rates of straw addition increased both the amount of N immobilized and the length of the 

period of net immobilization (Figure 2b).  
 

For the 5 g/kg rate of application of rice straw, adding additional N caused a small increase in the maximum 

amount of N immobilized (Figures 2a, c). There was no mineral N in the system at two weeks when straw was 

applied alone, whereas when N was added, mineral N was present throughout the incubation (Figure 1). The 

results obtained in our study also showed that additions of N had significant effects on net amounts of N 

immobilized as a result of added straw (Figure 2d). Similar results were obtained for wheat. 
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Figure 2.  Simulation of net N mineralized from rice straw at (a and b) different rates of application, and (c and d) 

in presence of urea-N. Vertical bars represent ±standard errors. 

 

Simulation of N mineralized from rice and wheat straw  

We used the model to simulate the effect of rates of organic matter and N application, on N mineralization from 

high C:N ratio materials (rice and wheat straw). The APSIM model predicted N mineralization from high C:N 

rice straw satisfactorily under different rates of application of straw in presence and absence of added N (Figure 

2). Similar observations were also recorded from wheat straw.  However, in presence of added N, the model 

prediction was better than for the treatments with residue alone (RMSE = 10.23 and EF = 0.79) values. The 

model assumes that the rate of decomposition of added organic materials is limited when there is inadequate 

mineral N in the system to satisfy the immobilization demand. Even so, it is shown that the model predicted 

satisfactorily the observed behaviour of the system. The modelling efficiency, a measure of goodness of fit between 

the simulation and observed data, was 0.82 for the treatments in the incubation study. 

 
Conclusion 
From the incubation experiment, the high C:N ratio rice and wheat straw caused immobilization of soil mineral 

N, to the extent dependent on the rate of application of the straw, and the soil inorganic N availability and the 

APSIM model predicted it satisfactorily. 
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Abstract 
Environmental systems usually are approximated in mathematical terms by making simplifying assumptions 

that lead to multiple model structures which may produce results that are equally consistent with available 

observations. An increasing number of papers are now being published on various applications of 

multimodeling in which predictions from various independent models are combined, rather than attempting to 

find the best model. Multimodeling consists of assigning weights to the simulation results from the various 

models, and then combining these results into a single prediction. We constructed a multimodel using 14 

independent Richards equation-based individual models by employing different pedotransfer functions. The 

individual models were not calibrated. Soil water contents were monitored for 300 days with multisensory 

capacitance probes at eight depths in four locations. Simulations using seven different methods to assign 

weights to individual models were compared with observed soil water time series. The multimodel was by far 

more accurate and reliable than the individual models. The concurrent use of several models, and mutimodeling 

in particular, presents an opportunity to better understand and forecast soil processes. 

 

Key Words 
Multimodeling, concurrent use, model weights, soil water, pedotransfer functions. 

 

Introduction 
Having a multiplicity of models of the same process or phenomenon is commonplace when modelling 

environmental processes, especially when the soil-plant-atmosphere system is considered. The multiplicity 

relates to differences in the simplifications needed to express observed natural complexities in mathematical 

terms, differences in model emphasis, and differences in scales at which models were developed or the natural 

system was observed (Beven, 2002). A massive effort in developing criteria for selecting the best model has 

thus far not produced a univocal solution. All error-based methods condition the evaluation and comparison of 

models on the available data. Using the reasonability of forecasts to evaluate models, e.g. with the GLUE 

methodology (Beven and Binley, 1992), does not exclude the subjective element of selecting cutoffs and 

defining reasonability. Invoking measures of model complexity based on the number of model parameters is 

problematic for nonlinear models. The uncertainty of the model structure is in most cases difficult to include in 

the criteria statistics (van Ness and Sheffer, 2005).  

 

The last 10 years has seen a marked interest in making use of different conceptual approaches instead of 

attempting to find the best model or using a single preferred model. Several approaches to the concurrent use of 

several models are currently being pursued. One approach is multimodeling, which consists of assigning 

weights to the simulation results from different models, and then combining results from the individual models 

into a single prediction (Burnham and Anderson, 2002). Multimodeling has been shown to improve both 

deterministic and probabilistic performances of predictions (Hagedorn et al. 2005).  The objective of this work 

was to investigate and demonstrate the applicability of multimodeling to water flow in variably saturated field 

soils. 

 

Methods 
Multimodeling  

The use of the term “multimodel” in publications has grown exponentially during the past ten years. To deal 

with uncertainties in model selection, multimodel prediction has emerged as a popular technique in climate 

prediction (Barnston et al. 2003), but later propagated also to surface hydrology (e.g., Regonda et al. 2006), 

subsurface hydrology (Neuman, 2002; Guber et al. 2009), and ecological modeling (Link and Barker, 2006). 

Since its introduction, multimodel prediction based on combining results from more than one model has been 

subject to much debate that can be summarized into two questions: (a) is a multimodel prediction better than the 
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single best forecast, and (b) what is the best approach to weigh predictions obtained with the different models. 

The improvement in predictions has been attributed to the fact that the multimodel provides better coverage of 

system parameter space. The relation between the average capability of the single model and the performance of 

the multimodel is not linear, especially when the probabilistic diagnostics is considered (Hagedorn et al. 2005). 

Selection of weights in multimodels is currently still a topic of research. Alternative methods for weighing have 

been reviewed by Armstrong (2001) and Burnham and Anderson (2002), among others.  The most often used 

methods are:  

1) arithmetic averaging of results from all models (AA), 

2) superensemble forecasting (SF) where the multimodel result is the multiple linear regression with 

individual forecasts as the independent variables (Krishnamurti et al. 2000),  

3) superensemble with singular value decomposition (SVD) to alleviate effects of multicollinearity caused 

by similarity in the predictions of individual models (Kharin and Zwiers, 2002),  

4) Bayesian model averaging (BA), (Neuman, 2002),  

5) using information theory (IT) to select weights by minimizing the information loss, for example by 

using Akaike criteria  (Poeter and Andersen, 2005), and  

6) using weights inversely proportional to the accuracy of each model on a training dataset (IW). 
 

The multimodel in this study was built using 14 individual models. Each of the models employed the Richards 

flow equation, the Brooks-Corey-Campbell or van Genuchten-Mualem equations for water retention and the 

unsaturated hydraulic conductivity, and one of 14 pedotransfer functions (PTFs) to estimate the hydraulic 

parameters from basic soil properties: (1) Rosetta (Schaap et al. 2001), (2) Vereecken et al. (1989), (3) 

Varallyay et al. (1982), (4) Wösten et al. (1999), (5) Rawls and Brakensiek (1982), (6) Saxton et al. (1986), (7) 

and (8) Williams et al. (1992), (9) Campbell and Shiozawa (1992), (10) Oosterveld and Chang (1980), (11) 

Mayr and Jarvis (1999), (12) Gupta and Larson (1979), Tomasella and Hodnett (1998), and Rawls et al. (1983). 

References to these PTF sources are given by Pachepsky et al. (2007), while a computer code to compute water 

retention according these functions is available upon request from the first author. The saturated hydraulic 

conductivity of the different textural classes was estimated as described in Pachepsky and Rawls (2004). None 

of the individual models was calibrated. 

 

Field data 

Field data were obtained from a 10x10 m plot at the research site of the Beltsville Agricultural Research Center, 

Maryland, USA. Soils at the site are classified as a coarse-loamy, siliceous, mesic Typic Hapludult, either well 

or excessively well drained. On average, the soils have a coarse loamy sand surface horizon (0-25 cm, organic 

matter 1.2-5.1%), followed by a sandy loam horizon (25-80 cm), and a loam horizon (80-120 cm), with loamy 

sand and fine-textured clay loam lenses between 120 and 250 cm. Soil water content measurements were taken 

with multi-sensor capacitance probes, MCPs (EnviroSCAN, SENTEK Pty Ltd., South Australia), at four 

locations within the plot. Data were recorded each 15 minutes from January 1 through October 23, 2007, at 

depths from 10 cm to 80 cm at 10 cm increments. The MCPs were connected to a CR-10X datalogger. Collected 

data were acquired using a Redwing 100 Airlink modem (Campbell Scientific, Inc., Logan, Utah) once a day. 

Soil texture, bulk density and organic carbon content were measured at each location at depths from 10 cm to 

100 cm at 10 cm increments. Rainfall at the site was measured with a pluviograph, while other weather data 

were obtained from the energy balance meteorological station with an eddy covariance tower located in 100 m 

from the plot. Daily evaporation rates were estimated using the Pennman-Monteith equation. We used the 

HYDRUS-1D software for all of the simulations. 
 

Results 
Basic soil properties and multimodeling results 

Basic soil properties varied substantially across the plot and with depth. Bulk density increased from 1.35-1.55 

g/cm
3
 at 5 cm depth to 1.70-1.95 g/cm

3
 at 90 cm. Sand content varied between 55 and 65 % at the surface and 

between 50 to 70 % at the 90 cm depth. The organic matter content did not show substantial variability, 

decreasing exponentially with depth from 2% at 5 cm depth to 0.2 % at 90 cm. The variations in texture and 

bulk density resulted in differences in the soil water regimes among the different locations (Figure 1). The 

multimodel provided accurate simulations of the daily average water contents at all depths (Figure 1). The 

lowest RMSE values were obtained with singular value decomposition (SVD) weighing. RMSEs were within 

the range of 0.018 cm
3
/cm

3
 to 0.061 cm

3
/cm

3
 at the depth of 10 cm, and within the range of 0.005 cm

3
/cm

3
 to 

0.019 cm
3
/cm

3
 below 10 cm at four locations. The best individual model performed markedly worse than the 

multimodel. 
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Figure 1. Examples of the multimodel accuracy at different depths at two monitoring locations. Symbols and lines 

show observed and simulated soil water content time series, respectively; the legend shows depth in cm.  
    

Reliability of multimodeling results 

Each water content time series was split into a training and a testing dataset. Training datasets were  

defined within time windows from 10 to 150 days long, and then moved across the whole observation period. 

All data outside the windows were used to test the multimodel prediction. The best fit of the multimodel to the 

daily water contents in the training sets were obtained using weights. The various weighing methods were 

evaluated in terms of their accuracy and uncertainty (i.e., average and standard deviation) in reproducing the 

measured water contents of the training datasets (Figure 2). 
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Figure 2.  Changes in the multimodel error (RSME) of the test datasets with the duration of the multimodel training 

period. Colors show different weighting methods; abbreviations are explained in the text. 
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Figure 3. Changes in the weights of individual models with the length of the multimodel training period for the SVD, 

IT, IW and BMA weighting methods. See text for abbreviations and PTF numbers. 

 

The length of the training period affected the accuracy of the predictions. In most cases, the average RMSE 

decreased and the standard deviation of the RMSE increased with an increase in the training period for all 

models and locations. Individual models had different weights at different depths, with the weights of some of 

the weighting methods also being dependent upon the duration of training period (Figure 3). 

 

Discussion and conclusion 
Multimodeling was found to be very effective approach to improving the accuracy of the flow simulations. 
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Accuracy and reliability of the multimodeling approach in our study varied among the six weighing methods. 

Overall, the best predictions were obtained with the SVD weighting method, probably because this method is 

well suited to decrease the effects of the multicollinearity of the inputs from the individual models. The main 

uncertainty factors were variation in soil properties, and the length of the training period. The reliability of the 

multimodeling approach increased with the length of the training period.  

 

The excellent results obtained in this study indicate much promise in using the multimodeling methodology for 

analysing field-scale water flow data.  Still, multimodeling is not the only way to take advantage of the 

concurrent use of existing models. Other approaches, such as model abstraction, have proved to be effective 

also. Model abstraction systematically simplifies a more complex model into a series of simpler models, and 

then uses these to (a) learn more about the system, (b) improve robustness of the predictions, (c) improve 

communication between the modeling results, and (d) improve performance of the modeling system as a whole 

(Pachepsky et al. 2007). Overall, the concurrent use of several models presents an important avenue for 

improving our understanding of soil processes.  
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Abstract 
Error propagation analysis with soil process models requires realistic quantification of errors in model inputs, 

model parameters and model structure. Once this is achieved, the error propagation analysis itself is relatively 

straightforward, and can for instance be done by employing a Monte Carlo simulation approach. Input error 

assessment is often complicated because it must include spatial, temporal and cross-correlations of input errors 

and must assess these at the right spatio-temporal support. Data-driven methods are preferred, but when data 

availability is poor, a people-driven method using expert elicitation can be used. Errors in model parameters can 

best be derived using Bayesian calibration, which requires that sufficient model output observations are 

available at the right support, and that the calibration procedure accounts for model input and structural errors. 

Bayesian model averaging is advocated for model structural error quantification, but this will only work when 

multiple models are available that cover the entire space of plausible models. If this cannot be guaranteed, a 

more sensible approach is to use a stochastic model that incorporates model structural error as system noise. 

 

Key Words 
Pedometrics, expert elicitation, bayesian calibration, bayesian model averaging, stochastic systems theory. 

 

Introduction 
Soil scientists know better than anyone else that the outputs of soil process models are not perfect. The reasons 

are well known: there are errors in the model input, model parameters and model structure. These errors 

propagate through the model in ways that often cannot easily be predicted without the help of specific tools. 

Therefore, in the past decades many approaches have been developed, implemented and applied to analyse error 

propagation in environmental and soil process models (e.g. Hyvonen et al. 1998; Bishop et al. 2006; Brown and 

Heuvelink 2007; Castrignano et al. 2008; Dean et al. 2009; Heuvelink et al. 2009). The most flexible and most 

often used approach is the Monte Carlo method, which is remarkably simple and easily implemented. First, the 

errors about the various ‘inputs’ to the model are characterized by probability distributions. Next, a pseudo-

random number generator is used to sample from these distributions, and the model is run with the sampled 

inputs. This process is repeated many times, each time running the model with a new sample of inputs and 

storing the result. The spread in the so-obtained set of model outputs characterizes the model output error. 

 

Although error propagation analysis with the Monte Carlo method may look simple and straightforward, it turns 

out to be difficult when concepts are to be put into practice. Important challenges are: 

• realistic quantification of error in model inputs, parameters and model structure; 

• keeping the required computation time within acceptable bounds; 

• ensuring that all important error sources are included in the analysis; 

• controlling the Monte Carlo sampling error; 

• assessing the contribution of individual error sources to the output error; 

• assessing error in spatio-temporal aggregates of model outputs; 

• validation of the outcome of an error propagation analysis. 

 

In this paper we only address the first of these challenges, because this is arguably the most crucial problem and 

space limitations prohibit a comprehensive analysis of all challenges. However, it should be noted that all are 

important and deserve attention. Also, the list may not be exhaustive. 

 

Realistic quantification of error in model inputs, parameters and model structure 
Although the distinction between model inputs and model parameters is not always obvious and models may 

have ‘inputs’ that are in the ‘grey zone’ between input and parameter (e.g. hydraulic conductivity, weathering 

rate), it is useful to separate error assessment for inputs from that for parameters. Inputs are defined as real-

world properties that exist regardless of the model and can in principle be observed. Parameters are only defined 
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within the context of a model and loose their meaning when there is no model (e.g. regression coefficients). 

 

Input error assessment 

Probability distributions associated with errors in model inputs can be derived in various ways, such as by 

analysing replicates in a laboratory to quantify laboratory measurement error, comparison of ground-truth data 

with mapped data to assess generalisation and classification errors, and use of geostatistics to quantify spatial 

interpolation error. These ‘data-driven’ methods are well-developed and are continuously improved, such as in 

geostatistics where the ordinary kriging paradigm has gradually been replaced by more elaborate approaches 

such as regression kriging (Hengl et al. 2004) and generalized linear models for geostatistical data (Diggle and 

Ribeiro 2007). Basically, improvement focuses on making more realistic assumptions. For instance, ordinary 

kriging assumes that the soil property of interest is a realization of a second-order stationary random function 

that has a constant mean (Webster 2000), whereas regression kriging allows the mean of the soil property to 

depend on external explanatory variables. Note, however, that assumptions must always be made, because the 

amount of data is insufficient to uniquely derive the entire probability distribution of the input error, which 

should include spatial, temporal and cross-correlations when relevant. One important issue that is rarely 

addressed in data-driven approaches but that needs attention is that the data used to quantify the error in the 

model input may have non-negligible observation error. Input error will be systematically overestimated if this 

is ignored. Pedometricians know that the ‘support’ of the observations is also crucially important when deriving 

error distributions. For instance, the error associated with the nitrate concentration of the soil solution at a 

‘point’ in space and time is much larger than that associated with the annual average of an entire field because 

‘hot spots’ in time and space will average out over the larger support. Thus, it is imperative that input error 

quantification is done at the support required by the model (Heuvelink 1998). Data-driven approaches are less 

developed for categorical soil properties. Only few approaches exist that derive the entire probability 

distribution of spatially distributed categorical variables (e.g. Finke et al. 1999; Hartman 2006; Brus et al. 

2008), and most of these are cumbersome, make unrealistic assumptions or have severe limitations. 

 
Figure 1.  Error in annual N2O emission (kg N/ha) from 1 ha plots on arable land on clay soils across Europe, 

independently estimated by five experts. The probability distribution of the error is characterized by the 25 
(triangle point up), 50 (square) and 75 (triangle point down) percentiles. 

 

Although the data-driven approach is the preferred option, in many practical cases it may fail for lack of 

sufficient data, leaving the ‘people-driven’ approach as the only alternative (Brown and Heuvelink 2005). Here, 

expert elicitation is used to derive probability distributions of model inputs. As an example, Figure 1 reports the 

quantified error about the annual nitrous-oxide emission (kg N/ha) for 1 ha plots on arable land on clay soils 

across Europe, estimated independently by five experts (Shang 2009). There is much disagreement between 

experts, which makes it difficult to merge their assessments. Figure 1 also shows that it is risky to rely on just 

one expert, which seems to be the common approach in people-driven assessment of input error (e.g. De Vries 

et al. 2003; Lesschen et al. 2007). It is imperative that we learn more about expert elicitation, which is well-

developed in the risk analysis literature (e.g. Kaplan 1992; Ayyub 2001; Cooke and Goossens 2004). It must be 

adapted to the type of applications which pertain to soil science and extended to the quantification of support-

dependent spatial- and cross-correlations. 

Parameter error assessment 

Errors in model parameters can only be realistically assessed by inverse methods, in which model predictions 

are compared with model output observations and parameter error is assigned such that it explains the observed 

differences. Common approaches are PEST (http://www.sspa.com/pest/) and GLUE (Dean et al. 2009). 
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Recently, Bayesian calibration was introduced to the environmental sciences and also to soil science (Reinds et 

al. 2007). Starting with user-defined a priori probability distributions, Bayesian calibration uses Markov Chain 

Monte Carlo methods to update these distributions with information derived from the observations. Bayesian 

calibration is attractive because it is flexible, mathematically sound, easily implemented, and yields the full joint 

probability distribution of the model parameters. It is computationally demanding and standard application 

ignores the contribution of errors in inputs, model structure and parameters not included in the analysis. Also, 

the decision whether to assume that parameters are constant or variable in space and/or time turns out to be 

crucial (e.g. Reinds et al. 2007). Pedometricians and soil process modellers must take a closer look at these 

issues and ensure that the methodology is properly applied. 

 

Model structure error assessment 

Bayesian calibration has been extended to include model structural error. This is known as Bayesian model 

comparison or Bayesian model averaging (Raftery et al. 1997). Multiple models are considered and each gets 

assigned a prior probability of being the ‘true’ model. Next these prior probabilities are updated to posterior 

probabilities based on the amount of agreement between observed and predicted model outputs. The 

methodology works well with statistical (regression) models, where a large number of candidate models can 

easily be formulated simply by including or excluding explanatory variables, but extension to physically-based 

models is cumbersome. Refsgaard et al. (2006) present a framework for dealing with model structural error in 

hydrological modelling that uses multiple model structures, but acknowledge that the range of models must span 

the entire space of plausible models. The latter will be difficult in practice, because most models borrow 

concepts from each other, are built by people that have the same education, meet at conferences and read each 

others work. In addition, the development of a complex soil process model is a time consuming affair that may 

involve many man years of work. These are all disadvantages of the Bayesian model averaging approach to soil 

process modelling. The advantage of Bayesian model averaging is that it can help choosing the optimal degree 

of model complexity, which is a persistent problem in soil process modelling that as yet has not been 

satisfactorily resolved. 

 

As an alternative to Bayesian model averaging, we may fall back to models that represent structural errors as 

(additive) noise terms. This leads to stochastic models or so-called state-space models, for which a rich theory 

has been developed (e.g. Pugachev and Sinitsyn 2002). Perhaps these models are somewhat restrictive in the 

way that structural error is represented, but the practical advantages are evident. Also, stochasticity can be 

defined at the level of the underlying differential equations, which seems physically plausible. The use of 

stochastic models and associated data assimilation methods, such as ensemble Kalman filtering and particle 

filtering, is abundant in disciplines such as hydrology, meteorology and oceanography. However, in soil science 

their use has been very restricted. There is no reason to believe that model structural error is less important in 

soil science, and if we want to address it thoroughly we need to get more involved in these approaches. 

 

Conclusion 
Quantification of error in the inputs, parameters and structure of soil process models needs more attention 

because model outputs should be accompanied by accuracy measures and realistic assessment of these errors is 

indispensible for sound error propagation analysis. In this respect, soil science still lags behind compared to 

other disciplines within the earth and environmental sciences. Most published studies only focus on the 

propagation of errors in model input, but this is only one component of the total error. Also, input error 

assessment must benefit more from developments in the expert elicitation literature. Bayesian inverse modelling 

approaches for quantification of errors in parameters and model structure are useful too, but it is important that 

these make comparisons at the right support and include all error sources (errors in inputs, parameters, structure 

and in observations of model output), because otherwise error estimates for individual error sources will be 

flawed. 
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Abstract 
The effect of saturation degree on hydraulic conductivity anisotropy in unsaturated soils is still an outstanding 

issue. This study investigates the impact of soil texture and soil bulk density on the degree of saturation-

dependent anisotropy of layered soils by combining pedo-transfer function (PTF) results with the thin layer 

concept. The main objective is to examine how anisotropy characteristics are related to the relationships 

between hydraulic properties and the basic soil attributes such as texture and bulk density. The hydraulic 

parameters are related to the texture and bulk density based on the PTF results through linear regression. The 

results illustrate that the coupled dependence of the hydraulic parameters on the texture and bulk density is 

important to determine the anisotropic behavior and the inter-relationships of soil texture, bulk density, and 

hydraulic properties may cause very different saturation-dependent of unsaturated soils. 

 

Key Words 
Arithmetic mean, harmonic mean, anisotropy factor, capillary pressure, minimum anisotropy. 

 

Introduction 
Large scale heterogeneous soils often demonstrate different moisture spreading and solute transport patterns at 

different saturation degrees (or capillary pressure head levels). While saturation-dependent anisotropy has been 

recognized for a long time (e.g., Zaslavsky and Sinai, 1981; Stephens and Heerman, 1988), is has not been fully 

understood. Mualem (1984) proposed a conceptual model to quantify the capillary pressure-dependent 

anisotropy by assuming that soils consist of many thin layers. A similar concept was extended to consider 

effects of bulk density variations within a particular soil type (Assouline and Or, 2006). Other approaches have 

also been proposed to study the soil anisotropy behavior. Zhang et al. (2003) proposed a tensorial connectivity-

tortuosity concept to describe the unsaturated soil hydraulic conductivities.  McCord et al. (1991) described a 

series of soil water tracer experiments and approaches to numerically model the flow behavior observed in field 

experiments. These experimental and numerical results provided strong supporting evidence for a variable, 

saturation-dependent anisotropy in the hydraulic conductivity of an unsaturated medium. Green and Freyberg 

(1995) calculated the capillary pressure-dependent anisotropy under conditions of large-scale gravity drainage. 

Ursino et al. (2000) used Miller similitude with different pore-scale geometries of the basic element to model 

macroscopic flow and transport behavior. Their results demonstrated that the geometry of the microstructure 

could lead to anisotropic behavior at larger scale even if the system is characterized by an isotropic correlation 

structure. Khaleel et al. (2002) used a unit-mean-gradient approach to derive upscaled hydraulic properties for 

flow parallel and perpendicular to bedding by simulating steady gravity drainage conditions for a series of 

applied infiltration rates of relatively dry conditions in coarse-textured sediments. In this study, we investigate 

unsaturated soil anisotropy that arises from a combination of soil texture and bulk density variations and the 

pedo-transfer function (PTF) results of soil hydraulic conductivities. PTFs transform basic soil properties such 

as texture and bulk density into water retention and unsaturated hydraulic conductivity. The main objective is to 

improve the fundamental understanding of various saturation-dependent anisotropy behaviors. Specifically, we 

examine how different inter-relationships of soil texture, bulk density and hydraulic properties may induce 

different anisotropy characteristics. 

 

Methods 
Hydraulic properties in relation to texture and bulk density 

Van Genuchten (1980) combined the soil water retention function with the statistical pore-size distribution 

model and obtained the following hydraulic property functions, 

Se = [1 + (αh)
n]-m

 (1) 

K = KS[1 – (1 – Se
1/m

)
m]2

 (2) 

where Se = (θ-θr)/(θs-θr) is the effective degree of saturation, θ is the volumetric water content, θr is the residual 

volumetric water content, θs is the saturated volumetric water content, h is the capillary pressure head, K is the 

hydraulic conductivity, KS is the saturated hydraulic conductivity; α, m and n are empirical hydraulic shape 
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parameters, and m=1-1/n.  Based on the results of the van Genuchten hydraulic parameters in relation to texture 

(using mean grain diameter d as a surrogate) and the bulk density established by the neural network based PTFs 

(Schaap and Leij, 1998) (see Table 1), we perform regression analyses to establish empirical linear 

relationships, which relate hydraulic properties to the two main indicators, the grain diameter d and the bulk 

density ρ. 

 
Table 1: Mean soil grain diameters, average hydraulic parameters and bulk density values for the soil textural 

classes (Hydraulic parameters values are from Schaap and Leij (1998)) 

Class d (mm) ρ (g/cm
3
) log(α) 

(log(1/cm)) 

log(n) log(KS) 

(log(cm/d)) 

Sand 0.9249 1.53 -1.45 0.50 2.81 

Loamy Sand 0.8245 1.52 -1.46 0.24 2.02 

Loam 0.4211 1.37 -1.95 0.17 1.08 

Sandy Loam 0.6222 1.46 -1.57 0.16 1.58 

Silt Loam 0.2214 1.28 -2.30 0.22 1.26 

Sandy Clayey Loam 0.6197 1.57 -1.68 0.12 1.12 

Silty Clayey Loam 0.1177 1.32 -2.08 0.18 1.05 

Clay Loam 0.4186 1.42 -1.80 0.15 0.91 

Silt 0.0747 1.33 -2.18 0.22 1.64 

Clay 0.2114 1.39 -1.82 0.10 1.17 

Sandy Clay 0.51601 1.59 -1.48 0.08 1.06 

Silty Clay 0.11644 1.36 -1.79 0.12 0.98 

 

From the linear regression analyses, it was found that log(n) is poorly correlated to either d or ρ. Hills et al. 

(1992) showed that the variability of soil hydraulic characteristics could be adequately modeled using a variable 

van Genuchten α with a deterministic van Genuchten n. Therefore, we use the mean value of n in this study. 

log(α) is best correlated to ρ, and is also fairly correlated to d. The best linear regression is: 

log(α) = 0.262d + 1.887ρ - 4.603 (3) 

where α is in (1/cm), ρ is in (g/cm
3
) and d in (mm). The correlation coefficient for this empirical regression 

relationship is 0.91. 

log(KS) is poorly correlated to ρ, and is fairly correlated to d. The best linear regression relationship is: 

log(KS) = 1.272d + 0.851 (4) 

where KS is in (cm/day). The correlation coefficient for this regression relationship is 0.66. 

These empirical linear regression relationships are used to develop anisotropy models in the following section. 

While other non-linear regression relationships or more complicated relationships can also be easily 

incorporated, we use these linear regression relationships for the sake of simplicity because our goal is to focus 

on whether and how the inter-relationships of soil texture, bulk density, and hydraulic properties may affect the 

anisotropy behaviors of layered unsaturated soils. 

 

Anisotropy model  

We consider a soil consisting of a large number of thin, but distinguishable layers of different texture (as 

indicated by d) and the bulk density ρ. Each layer is characterized by its own van Genuchten hydraulic 

conductivity function, K(Se, KS, α, n). Since the van Genuchten parameters have been related to d, and ρ as 

described in the previous section, the hydraulic conductivity can now be written in a general form of K(Se, d, ρ). 

The layered formation is expressed in terms of a joint probability density function, f(d, ρ), of the grain diameter 

d and the bulk density ρ. Parallel to the layering, the hydraulic conductivity KH(Se), is described by the 

arithmetic mean of K(Se, d, ρ) of the layers (Mualem, 1984; Assouline and Or, 2006), 

 (5) 

The hydraulic conductivity perpendicular to the layers, KN(Se), is described as the harmonic mean of K(Se, d, ρ) 

of the layers, which is expressed as follows, 

 (6) 

The anisotropy factor, A, can then be expressed as the ratio of the hydraulic conductivities in the parallel and 

perpendicular directions, 

A(Se) = KH(Se)/KN(Se) (7) 

For simplicity, we use uniform distributions to describe the probability distributions of both d and ρ, although 
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other distributions could also be incorporated. Based on the probability density functions and the established 

regression relationships, we can calculate KH (hydraulic conductivity parallel to the layering), KN (hydraulic 

conductivity perpendicular to the layering), and A (anisotropy factor) as functions of the effective saturation 

degree Se from Eqns. (5) through (7), which can also be related to the capillary pressure head h. 

 

Results and Discussion 
Since KS is fairly correlated only to the texture (with d as a surrogate), we first consider the case when KS is 

related to d and α is related to both d and ρ through the regression relationships shown in Eqn. (4) and Eqn. (3) 

respectively. Figure 1 shows the relationships between the anisotropy factor A, and h as well the saturatin 

degree Se for various combinations of d and ρ ranges and n=1.59. Since KS is not as good as α in terms of 

correlation to either d and ρ, we also investigate the scenario that a simple constant KS value equal to the mean 

value is used and α is related to both d and ρ. Figure 2 shows the relationships between the anisotropy factor A, 

and h as well Se for this scenario under otherwise same conditions as in Figure 1. 
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Figure 1.  Relationships between the anisotropy factor A and the saturation degree Se as well as the capillary 
pressure head h.  KS is related to d and α is related to both d and ρ through regression relationship for various 

combinations of d and ρ ranges. n=1.59. 
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Figure 2.  Relationships between the anisotropy factor A and the saturation degree Se as well as the capillary 

pressure head h.  KS is constant equal to the mean and α is related to both d and ρ through regression relationship 

for various combinations of d and ρ ranges. n = 1.59. 
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Results shown in Figures 1 and 2 indicate that anisotropy typically increases when the saturation degree 

decreases (or the capillary pressure head increases). When the grain diameter range is large (i.e., the 

heterogeneity is strong) and when KS is related to d, and α is related to both d and ρ, a feature that the anisotropy 

factor A exhibits a minimum value at certain capillary pressure head (i.e., a non-monotonic relationship) is 

observed (black triangle symboled curve in Figure 1). Many previous studies (McCord et al. 1991; Green and 

Freyberg, 1995; Assouline and Or, 2006) reported that the soil anisotropy first decreases as the capillary 

pressure increases and then increase as the capillary pressure further increases (i.e., the anisotropy reaches a 

minimum at a certain capillary pressure level). Other studies (e.g., Ursino et al. 2000; Khaleel et al. 2002) found 

that the soil anisotropy increases monotonically with increasing capillary pressure. This study illustrates that the 

anisotropy reaches a minimum only when both KS and α are variables across the soil layers and the 

heterogeneity of soil attributes across layers is large. For other conditions, the anisotropy is found to increase 

monotonically with the decreasing saturation degree (or increasing capillary pressure head). 

 

Conclusion 
The key conclusions from this study include: 1) the coupled dependence of the hydraulic parameters on the 

texture and bulk density is important to determine the anisotropic behavior of unsaturated soils, and 2) the inter-

relationships of soil texture, bulk density, and hydraulic properties may cause very different anisotropy 

behaviors of layered unsaturated soils. 

 

References 
Assouline S, Or D (2006) Anisotropy factor of saturated and unsaturated soils. Water Resources Research 42, 

W12403, doi: 10.1029/2006WR005001. 

Green TR, Freyberg DL (1995) State-dependent anisotropy - comparisons of quasi-analytical solutions with 

stochastic results for steady gravity drainage. Water Resources Research 31(9), 2201-2211.  

Hills RG, Hudson DB, Wierenga PJ (1992) Spatial variability at the Las Cruces trench site. p. 529–538. In (ed 

MTh van Genuchten) ‘Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils’. 

(University of California Riverside, Riverside, CA). 

Khaleel R, Yeh TCJ, Lu Z (2002) Upscaled flow and transport properties for heterogeneous unsaturated media. 

Water Resources Research 38(5), 1053 doi: 10.1029/2000WR000072. 

McCord JT, Stephens DB, Wilson JL (1991) Hysteresis and state-dependent anisotropy in modeling unsaturated 

hillslope hydrologic processes. Water Resources Research 27(7), 1501-1518.  

Mualem Y (1984) Anisotropy of unsaturated soils. Soil Science Society of America Journal 48, 505-509. 

Schaap MG, Leij FJ (1998) Database-related accuracy and uncertainty of pedotransfer functions. Soil Science 

163(10), 765-779. 

Stephens DB, Heermann S (1988) Dependence of anisotropy on saturation in a stratified sand. Water Resources 

Research 24(5), 770-778. 

Ursino N, Roth K, Gimmi T, Flühler H (2000) Upscaling of anisotropy in unsaturated Miller-similar porous 

media. Water Resources Research 36(2), 421-430.  

van Genuchten MTh (1980) A closed-form equation fro predicting the hydraulic conductivity of unsaturated 

soils. Soil Science Society of America Journal 44, 892-898. 

Zaslavsky D, Sinai G (1981) Surface hydrology: III-Causes of lateral flow. Journal of Hydraulic Division, 

ASCE 107(HY1), 37-52. 

Zhang, ZF, Ward, AL, Gee GW (2003) A tensorial connectivity-tortuosity concept to describe the unsaturated 

hydraulic properties of anisotropic soils. Vadose Zone Journal 2, 313-321. 

 

 


